U.S. DEPARTMENT OF COMMERCE / National Oceanic and Atmospheric Administration

OFFICE OF THE FEDERAL COORDINATOR FOR METEOROLOGICAL SERVICES AND SUPPORTING RESEARCH

Standard Formats for Weather Data Exchange Among Automated Weather Information Systems

 May 1990

THE FEDERAL COMMITTEE FOR
METEOROLOGICAL SERVICES AND SUPPORTING RESEARCH (FCMSSR)

DR. WILLIAM E. EVANS, CHAIRMAN
Department of Commerce
DR. EWEN N. WILSON
Department of Agriculture
DR. GEORGE P. MILLBURN
Department of Defense
DR. DAVID B. NELSON
Department of Energy
DR. DOYLE FREDERICK
Department of the Interior
DR. LISLE A. ROSE
Department of State
MR. NEAL BLAKE
Department of Transportation
MR. DAVID TORNQUIST
Office of Management and Budget

MR. ROBERT H. MORRIS
Federal Emergency Management Agency
DR. LENNARD A. FISK
National Aeronautics and Space Administration

DR. ROBERT W. CORELL
National Science Foundation
MR. WILLIAM G. LAYNOR
National Transportation Safety Board

DR. DENWOOD F. ROSS
U.S. Nuclear Regulatory Commission

MR. H. MATTHEW BILLS
Environmental Protection Agency
MR. ROBERT L. CARNAHAN
Federal Coordinator for Meteorology

DR. JAMES A. ALMAZAN, Executive Secretary Office of the Federal Coordinator for Meteorological Services and Supporting Research

THE INTERDEPARTMENTAL COMMITTEE FOR
METEOROLOGICAL SERVICES AND SUPPORTING RESEARCH (ICMSSR)

MR. ROBERT L. CARNAHAN, Chairman
Federal Coordinator
DR. NORTON D. STROMMEN
Department of Agriculture
DR. RONALD D. McPHERSON
Department of Commerce
COL TED S. CRESS, USAF
Department of Defense
DR. HARRY MOSES
Department of Energy
MR. LEWIS T. MOORE
Department of the Interior
DR. LISLE A. ROSE
Department of State
MR. RICHARD J. HEUWINKEL
Federal Aviation Administration Department of Transportation

MR. NEAL THAYER
U.S. Coast Guard Department of Transportation

MR. FRANCIS SCHIERMEIER
Environmental Protection Agency
MR. ROBERT T. JASKE
Federal Emergency Management Agency
DR. SHELBY TILFORD
National Aeronautics and Space Administration

DR. RICHARD S. GREENFIELD
National Science Foundation
MR. JAMES C. MCLEAN, JR.
National Transportation Safety Board

MR. ROBERT A. KORNASIEWICZ
U.S. Nuclear Regulatory Commission

MR. DAVID TORNQUIST
Office of Management and Budget

DR. JAMES A. ALMAZAN, Executive Secretary Office of the Federal Coordinator for
Meteorological Services and Supporting Research

FEDERAL COORDINATOR
 FOR
 METEOROLOGICAL SERVICES AND SUPPORTING RESEARCH
 11426 Rockville Pike, Suite 300 Rockville, Maryland 20852

Standard Formats
for
Weather Data Exchange
Among
Automated Weather Information Systems

FCM-S2-1990
Washington, D. C. May 1990

CHANGE AND REVIEW LOG

Use this page to record changes and notices of reviews.
$\left.\begin{array}{l}\begin{array}{c}\text { Change } \\ \text { Number }\end{array} \\ \hline 1 \\ \hline 2 \\ \text { Numbers }\end{array} \quad \begin{array}{c}\text { Date } \\ \text { Posted }\end{array}\right]$

FOREWORD

The Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM), through its infrastructure of committees and working groups under the Interdepartmental Committee for Meteorological Services and Supporting Research (ICMSSR), prepares standard data formats for weather information and protocols of communications to improve the exchange of information among the Federal agencies and for efficient applications by the users.

This document presents an update of standard data formats. It simplifies the treatment of multiple groups of mixed formatted binary data blocks, includes the formatting and use of meteorological data from satellites, and expands the graphics capability for users.

The efforts of the members of the Working Group for Communication Interfaces and Data Exchange (WG/CIDE) in preparing this update are gratefully acknowledged.

Standard Formats for Weather Data Exchange Among Automated Weather Information Systems

TABLE OF CONTENTS
CHANGE AND REVIEW LOG ii
FOREWORD iii
TABLE OF CONTENTS v
LIST OF FIGURES xi
LIST OF TABLES xV
CHAPTER 1. INTRODUCTION
1.1 Purpose 1-1
1.2 Objective 1-1
1.3 Scope 1-1
1.4 Essential Principles 1-2
CHAPTER 2. GENERAL FORMAT DEFINITION
2.1 Format Structure 2-1
2.2 Block Format 2-2
2.3 Coordinate System Conventions 2-4
CHAPTER 3. PRODUCT CONTENT
3.1 Data Categories 3-1
3.2 Mode/Submode Designations 3-1
3.3 Product Format 3-2
3.4 Mode/Submode Combinations 3-2
CHAPTER 4. CONTROL BLOCKS
4.1 Product Identification Block 4-1
4.2 End of Product Block 4-1
4.3 Classification Block 4-1
4.4 Define Plot Parameters Block 4-1
4.5 Define Datawidth/Fieldwidth Block 4-1
4.6 Product Information Block 4-2
4.7 Line Information Block 4-2
CHAPTER 5. SYSTEMS DATA
5.1 General Information 5-1
5.2 Binary Data Block 5-1
CHAPTER 6. FORMATTED BINARY BLOCKS
6.1 Product Definition Block 6-1
6.2 Satellite Product Definition Block 6-1
6.3 Data Description Block 6-1
6.4 Data Block 6-1
6.5 Presentation of Formatted Binary Data 6-1
6.6 Data Sequence Block 6-3
CHAPTER 7. VECTOR GRAPHIC BLOCKS
7.1 Product Definition Block 7-1
7.2 Data Description Blocks 7-1
7.3 Data Blocks 7-2
CHAPTER 8. ALPHANUMERIC BLOCKS
8.1 Product Definition Block 8-1
8.2 Data Description Block 8-1
8.3 Data Blocks 8-1
CHAPTER 9. RASTER SCAN BLOCKS
9.1 Product Definition Blocks 9-1
9.2 Data Description Block 9-1
9.3 Data Block 9-1
CHAPTER 10. GRIDDED DATA BLOCKS
10.1 Product Definition Block 10-1
10.2 Data Description Block 10-1
10.3 Data Blocks 10-1
10.4 Grid Conventions 10-2
APPENDIX A. TERMS, DEFINITIONS AND STANDARD VALUES A-1
A. 1 Glossary A1-1
A. 2 Mnemonics A2-1
APPENDIX B. REFERENCES B-1
APPENDIX C. CODE TABLES C-1
C.1. General C1-1
C.2. Meteorological Program Codes C2-1
APPENDIX D. PRODUCT IDENTIFIER NUMBERS D-1
D.1. File Indicators D1-I
D.2. Catalog Numbers D2-1
APPENDIX E. LOCATION IDENTIFIERS E-1
APPENDIX F. EXAMPLES ... F-1
F.1. Vector Graphic Product Structure F-2
F.2. Alphanumeric Product F-5
F.3. Surface Formatted Binary Product F-7
F.4. Upper Air Formatted Binary Product F-10
F.5. Unpacked Gridded Data Product F-13
F.6. Plot Data Block Using Plot Process
Code 2 F-15

LIST OF FIGURES

Figure Page
2-1 General Block Format 2-6
2-2 General Product Data Set Structure 2-8
4-1 Product Identification Block Format 4-3
4-2 End of Product Block 4-5
4-3 Classification Block 4-5
4-4 Define Plot Parameters Block 4-6
4-5 Define Datawidth/Fieldwidth Block 4-8
4-6 Product Information Block 4-9
4-7 Line Information Block 4-10
5-1 Binary Data Block 5-1
6-1 Formatted Binary Product Definition Block 6-4
6-2 Formatted Binary Data Description Block, Option 1 6-5
6-3 Formatted Binary Data Description Block, Option 2 6-7
6-4 Formatted Binary Data Block 6-9
6-5 Formatted Binary Sequence Block 6-10
6-6 Satellite Product Definition Block 6-12
7-1 Vector Graphic Product Definition Block 7-4
7-2 Define Graphics Data Parameters Product Definition Block 7-7
7-3 Absolute Vectors Block 7-9
7-4 Relative Vectors Block 7-10
7-5 CPC Vectors Block 7-11
7-6 Variation Exception Vectors (VEV) Block 7-12
7-7 Long/Short Relative Vectors Block 7-14
7-8 Point-Slope Vectors Block 7-15
7-9 Wind Barbs Vectors Block 7-16
7-10 Vector (Arrow) Plot Block 7-17
7-11 Center Radius Arc Vectors Block 7-19
7-12 Curve Vectors Block 7-21
8-1 Alphanumeric Product Definition Block 8-3
8-2 Alphanumeric Characters Block 8-4
8-3 Plot Data Block 8-5
8-4 Wind Barbs Data Block 8-7
8-5 Alphanumeric Data Block 8-9
9-1 Satellite Product Definition Block 9-4
9-2 Pixel Product Definition Block 9-7
9-3 Raster Scan Data Block 9-9
10-1 Packed Gridded Data Product Definition Block 10-3
10-2 Gridded Data Definition Block Parameters 10-7
10-3 Band Index Data Block 10-8

LIST OF TABLES

Table Page3-1 Key to Mode/Submode Designations3-6
3-2 Mode Designations 3-7
3-3 Submode Designations 3-8
3-4 Allowable Mode/Submode Combinations 3-10
A2-1 Symbol, Element and Line Mnemonics A2-1
A2-2 Data Block Data Code A2-9
A2-3 Other Mnemonics Used in This Report A2-12
C1-1 Standard ASCII Code (ANSI X3.4-1977) C1-1
C2-1 Projection Indicator (PI) Set Codes C2-1
C2-2 Plot Process Codes C2-7
C2-3 Grid Indicator (GI) Set Codes C2-8
C2-4 Units Code (Octal) C2-11
C2-5 Data Representation Codes C2-14
C2-6 Fonts C2-15
D-1 File Indicators D-2
D-2 Catalog Numbers D-3

INTRODUCTION

1.1. Purpose. This Weather Data Exchange Format Document presents a common set of formats to be used for the presentation of weather data among Federal agencies. The document includes formats which meet current and planned requirements of the National Weather Service (NWS), United States Air Force (USAF), United States Navy (USN), and Federal Aviation Administration (FAA). WMO Sponsored international codes (for example, GRIB, GRID, and BUFR) are not addressed in this document

A potential user should not attempt to apply specific formats without: (1) a thorough knowledge of the format contents, (2) an understanding of the product data set format syntax necessary to organize the data, and (3) an understanding of general techniques as applied to automated computer graphics. Reference to Appendix F during the reading of this document will greatly aid the user in understanding the formats.
1.2. Objective. The objectives of this standard formats document are:
A. To provide a level of data structuring above the telecommunications that is not dependent on the networking and data link procedures.
B. To provide a format that will support existing products and message data, both graphic and nongraphic.
C. To provide a device independent format that will allow for expansion to handle new data structures or graphics devices without having to redefine the general structure of the format.
D. To provide a format that will be convenient for the host processor to generate and for the receiving hardware to process.
E. To provide a format that readily allows receivers to bypass data formats not usable or necessary at the receiving station.
F. To provide a format which is byte oriented with 8 bits per byte (octets).
1.3. Scope. This document specifies the format structure for data transfer, identifies categories of products covered by the formats and defines the formats for each data category to the
byte level. Telecommunications protocols are not covered in this document.
1.4. Essential Principles. In order to facilitate automated processing by computer at the sites being serviced by this format, the following principles must apply:
A. The defined meaning and size of an element must remain absolutely constant, regardless of the mode/submode block (see Section 2.2 , Block Format) in which it appears. Elements which are common to more than one mode/submode block must appear in those blocks as defined:

1. In their defined order.
2. In their defined format.
3. Having constancy of meaning regardless of block type.
B. The defined field size (in either bits or bytes) for an element must remain constant throughout the code.
C. Redundancy and duplication shall be avoided. This especially applies to defining "new" elements or new block types (mode/submode) which are nearly a duplication of an existing element or block type. For example: Rather than defining a new grid type code, the existing codes should be used by adding to its definition.
D. Formats shall be "self-contained" as far as technically feasible. That is, they should carry within the code all that is necessary to decode and use the information without reference to assumed or previously understood rules not contained in this publication.
E. Format elements must always be general rather than device specific or machine specific. For example, a number that must be represented in floating point format as an element should have field lengths which conform easily to byte and/or byte pair boundaries. The format of such elements should fall naturally into the structure of the block which holds them.
1.4.1. Guidelines. In order to maintain fidelity with Objective A, Section 1.2 with respect to "data structuring above the telecommunications level," it is important to adhere to the following guidelines:
A. Elements included in this document are present for the purpose of non-telecommunication processing. These
data are the innermost part of an envelope whose outer parts are concerned with telecommunications processing.
B. Changes or enhancements to the telecommunications sections of the product transmission are completely independent of changes to the formats contained herein. Conversely, changes to these formats should not impact in any way the telecommunications format.

GENERAL FORMAT DEFINITION

2.1. Format structure. The format structure is constructed with information blocks. Information blocks provide control information and contain data. Figure 2-1 displays the general format of information blocks. A specific grouping of these blocks is used to create a product (see Section 2.1.2.1) and is considered a product data set.
2.1.1. Information Blocks Definition. An information block is a series of bytes identifying, controlling, or containing information used to create products. These blocks are characterized as control blocks, product definition blocks, data description blocks and data blocks.
2.1.1.1. Control Blocks. The control blocks are Product Identification, End of Product and parameter control blocks. The Product Identification Block is a standard block used for all products. Its purpose is to convey the information needed to uniquely identify each product so that appropriate processing routines may be initiated by the receiving system. The End of Product block is a standard block that signifies the end of the product data set. Other control blocks (see Chapter 4) provide product data set wide control of parameters in the data blocks.
2.1.1.2. Product Definition Block. The Product Definition block shall contain all information required to define the nature of the product being transferred (product area, scale, orientation, etc.).
2.1.1.3. Data Description Block. The Data Description block shall contain all information required to describe the contents of the data block(s) that follow (number and type of elements, element arrangement, units, etc.). The data description block shall be used when additional information about the structure and content of the data block(s) is required.
2.1.1.4. Data Block. The Data Block(s) shall contain the data in the format, units, etc., specified by the data description block, if not inherent in the data block itself.
2.1.2. Blocking Conventions. Multiple information blocks are used to create a product.
2.1.2.1. Product Data Set Structure. The product data set components shall be: a Product Identification block; a Product Definition block; one or more sets of control, data description, and data blocks; and each product data set shall be
terminated by an End of Product block. Figure 2-2 displays the general Product Data Set Structure.
2.1.2.2. Block Sequencing. The Product Identification block shall always be the first block in the product data set. The Product Definition Block, when required (see Section 3.4.1) shall immediately follow the Product Identification Block. Define Plot Parameters and Define Data Width/Field Width blocks may be interspersed with the data blocks and may appear anywhere in the product data set after the Product Identification block but before the data to which it applies. Multiple sets of Data Description blocks (when used), followed by one or more Data Blocks, may be used as required by the product originator to define all components of the product.
2.2. Block Format. Each block may contain the following fields: a LENGTH field, the MODE and SUBMODE fields, the DATA field, and a CHECKSUM field. These fields are defined in the notes following Figure 2-1. The LENGTH and CHECKSUM fields provide internal block information. The MODE and SUBMODE fields indicate the general content of the DATA field in the block.
2.2.1. Block Termination. The LENGTH field, if used, identifies the end of the block by providing a count of all byte pairs contained in the block. If the LENGTH field is not used, termination of a block can be accomplished by setting the most significant bit of the last byte in the data field. The originator must be able to guarantee that all other bytes in the data field have a zero in the most significant bit; otherwise, the LENGTH field will be necessary. In the case of text data, ETX plus ETB, or NULL, shall be used to end a block. (See Section 2.2.3.2.B.)
2.2.2. Block Size. Block length shall be variable but shall not exceed 4096 bytes, including the LENGTH and CHECKSUM fields when used. Multiple data blocks shall be used as required by the product originator to conform to the block length restriction and enhance circuit efficiency.
2.2.3. Block Format Conventions. The following general format conventions shall be observed within all blocks:
A. Bit numbering shall be right to left, starting with zero (the least significant bit).
B. Byte numbering shall be left to right, starting with byte zero.
C. All fields in the blocks shall be in one or more bytes unless otherwise specified in the block format or the data description block.
D. All block formats shall be arranged into two byte pairs with the bytes ordered left to right.
E. The LENGTH and CHECKSUM fields shall be used as required by the product originator. The presence or absence of the LENGTH and CHECKSUM fields shall be indicated by the flag in the LENGTH field. If the LENGTH and CHECKSUM fields are not used, the two leftmost bits in byte zero of the block (i.e., the two most significant bits of the MODE byte) become the flag bits.
2.2.3.1. Graphic Display Information. The data contained in blocks which are display-oriented shall observe the following conventions:
A. All negative binary data shall be in two's complement form.
B. Binary data shall be right justified and zero filled.
C. All data is represented in octal notation unless otherwise noted.
2.2.3.2. Text Information. The data contained in text blocks (e.g. displayable messages) shall observe the following conventions:
A. All text data shall be seven (7) bit ASCII (ANSI X3.4-1977). Parity, if used, is transparent to these formats, except when the uppermost bit of the last data byte is being used to identify the last byte for recognition of block termination. (See Section 2.2.1.)
B. Text data shall be left justified within a field and blank filled. When using the text code form, one of two options will be used to terminate the text strings. The first option is to use the null (0) byte as the only termination for all text strings. In this case the characters ETX, ETB, and RS will not be used. The second option will use the RS character to separate records within a text data block. The control character ETB will be used at the end of blocks which are not the final block of a product data set. The character ETX will be the final character of an ASCII block which is the final block in a product data set. The most significant bit of the final byte (ETB or ETX) in the block may also be used for termination of a block when the previous bytes contain zeros in the most significant bit.
2.3. Coordinate System Conventions. Many of the products transmitted in the formats specified in this document use one of three coordinate systems to register and locate features at their proper position on a map or background. Once the coordinate system is selected, that system is then used for all subsequent coordinate references. The user needs to have a thorough understanding of the particular coordinate system being used and the implication that system has on proper data interpretation. The coordinate system in use for a product is indicated by a COORDINATE FLAG Code found in the Product Definition Block. The three coordinate systems which can be used are:

Latitude/Longitude

Cartesian Pixel.

The choice of coordinate systems affects interpretation of the following product registration information (applicable mode/submodes appear in parenthesis):

Reference M,N Coordinates	$(4 / 20,7 / 20)$
M,N Maximum	$(4 / 30)$
M,N Center	$(4 / 30)$
M,N Coordinates	$(4 / 1,4 / 2,4 / 3,4 / 4,4 / 5,4 / 6$,
	$4 / 7,4 / 10,5 / 1,5 / 2,5 / 3)$
Delta M,N	$(4 / 2,4 / 5,5 / 1)$
ISTART, JSTART	$(7 / 20)$
IPOLE, JPOLE	$(7 / 20)$

The explicit meaning of the coordinate flag remains in effect until changed by a new coordinate flag presented in a new Product Definition Block within the product data set in question.
2.3.1. Latitude/Longitude Coordinate System (Coordinate Flag $=0$). With this system, all product registration data use latitude and longitude to position features. All grid coordinate references appear in standard latitude and longitude on earth.
2.3.2. Cartesian Coordinate System (Coordinate Flag = 1). Many of the numerical models used in meteorology use some form of Cartesian coordinate grid system for mathematical manipulations. Because of this, it is convenient to output products with data registered to these Cartesian grid points. The array of points themselves are created projecting the earth onto a flat plane, selecting a coordinate system origin, and defining an array of uniformly spaced points. The agencies involved in producing the products described in this document each have their own unique Cartesian coordinate grid systems but they are related. Mathematical equations can be used to convert from one system to
the other but the user must have basic knowledge concerning the grid system of the source. This information includes:

Projection
Grid density
Indexing conventions
Origin point
Location of pole (in Cartesian coordinates)
Standard longitude
U, V-Wind component conventions.
Knowing these, the user can properly interpret the coordinate information imbedded in the product.
2.3.3. Pixel Coordinate System (Coordinate Flag = 2). In some cases, it is convenient to send product coordinate information relative to a logical display reference system, called pixel in this case. The origin $(0,0)$ of the logical display space is the lower left corner and the indexing convention follows the right hand rule. Products are described relative to this logical display space in terms of horizontal (I-direction or X-direction) and vertical (J-direction or Y -direction) displacement from the origin. This pixel grid coordinate system can be translated by the user into whatever system needed for product manipulation and display.

NOTES:

1. FF. Flag: The Flag field is a two-bit LENGTH/CHECKSUM indicator. Possible combinations of these two bits are:

Flag Bits LENGTH field CHECKSUM field

00	$Y E S$	YES
01	YES	NO
11	NO	NO

If the most significant Flag bit is one (1), the least significant six bits of the left-hand byte will contain the Mode. The Flag bit combination 10 is not used as an indicator since there will never be a CHECKSUM field if the LENGTH field is not present. Blocks that contain non-text data shall always have a LENGTH field.
2. LENGTH: The LENGTH is the total number of two byte pairs in the current block, including the bytes containing the LENGTH and CHECKSUM fields if present.
3. The notation (I) indicates an unsigned integer quantity, e.g., LENGTH (I) indicates the LENGTH is an integer number.
4. MODE: The MODE indicator byte is contained in all transmission blocks and tells to the receiver the type of block being transferred. Note that the most significant bit will be a one (1) if LENGTH and CHECKSUM fields are not present:

Figure 2-1. General Block Format; Mode X, Submode Y

NOTES: Figure 2-1 (Cont.)
5. SUBMODE: The SUBMODE is used to group each MODE into its logical subdivisions for the purpose of clarity in defining a block of data within a transmission mode.
6. DATA FIELD: The DATA FIELD bytes contain information about the data and/or the data itself. Each block (i.e., MODE and SUBMODE combination) has information defined in this field for specific applications. The DATA FIELD will end on a two byte boundary, with binary data being zero filled and alphanumeric data being blank filled if necessary.
7. CHECKSUM: The CHECKSUM is a two's complement 16 bit field containing the arithmetic sum of all 16 bit byte pairs in the block with no end around carry. Adding all the byte pairs in a Mode/Submode that contains a CHECKSUM field will produce a sum equal to zero.

Decimal	Hex Print		
5	0005	00	5
769	0301	MODE	SUBMODE
86	0056	YEAR	
54	0036	SERIAL DAY	
914	F66E	CHECKSUM	
CHECKSUM	$-914_{10}=$	$\mathrm{C}_{6} \mathrm{E}_{16}$	

Figure 2-1. (Cont.) General Block Format; Mode X, Submode Y

Figure 2-2. General Product Data Set Structure

$$
2-8
$$

PRODUCT CONTENT

3.1. Data Categories. The formats contain information blocks of two basic types: 1) product data set control and 2) product data.
3.1.1. Product Data Set Control. The product data set control information includes the blocks for beginning and ending the product data set, for defining parameter values and fields within the product data set, and which contain other product related information. Also, user specific internal system data control is provided for.
3.1.2. Product Data. The product data can be specified by the following categories:
A. Formatted Binary
B. Vector Graphic
C. Alphanumeric
D. Raster Scan
E. Gridded
3.1.2.1. Formatted Binary Data. Formatted binary data consists of machine-readable decoded weather observation/forecast data.
3.1.2.2. Vector Graphic Data. Vector graphic data shall be used to describe weather maps/charts. Vector graphic data includes vectors, graphic symbols and geographic background.
3.1.2.3. Alphanumeric Data. Alphanumeric (A / N) data shall be used for man-readable messages consisting of A / N character strings and labels for display products.
3.1.2.4. Raster Scan Data. Raster scan data shall be pixel data describing visual imagery such as satellite pictures, radar pictures, gray level imagery or facsimile images. This data may be in either packed or unpacked form.
3.1.2.5. Gridded Data. Gridded data shall consist of sets of machine readable weather data located at a regular array of grid points.
3.2. Mode/Submode Designations. All format blocks are identified by mode and submode values. These values are represented in octal notation. The key to general mode/submode assignments is found in Table 3.1. In general, mode numbers
represent data categories and submode numbers represent the specific product definition, data description and data blocks within a data category. Currently defined modes and submodes are shown in Tables 3.2 and 3.3; however, new mode/submode combinations shall be added based on agency needs and committee agreement.
3.2.1. Mode Designations. The data categories in Section 3.1 .2 are identified by mode numbers. Mode 1 contains control blocks, Mode 2 is for individual user internal system applications, and Modes 3 through 7 are for the product data. See Table 3.2.
3.2.2. Submode Designations. Table 3.3 presents a listing of the submodes within each mode and gives a reference to corresponding figures.
3.3. Product Format. A product data set is formed to create a product. A complete product shall consist of all information required to describe a bounded group of related data. A product data set contains the product identification, definition, data description and data blocks (the format specified in Chapter 2) as necessary to create the desired product. The product definition block identifies the type of product (e.g., alphanumeric message, graphic display, or satellite image, etc.). Data descriptions and data blocks from any data category may be included in a single product data set if that data is needed for the product (e.g., alphanumeric labels applied to a graphic product). A representative example of a vector graphic product is found in Appendix F, Example No. 1.
3.4. Mode/Submode Combinations. As a rule, the mode/submode designations for a product data category will not be mixed with designations for a different product data category. For example, vector graphic data and gridded data will not appear in the data set defining one product.
3.4.1. Required and Optional Blocks. The following shows the required and optional blocks for each of the product data categories.
3.4.1.1. Systems Data Category
A. Required Blocks

Mode 1/Submode 1
Mode 2/User defined Submode
Mode 1/Submode 2
B. Optional Blocks

Mode 1/Submode 3
3.4.1.2. Formatted Binary Product Data Category
A. Required Blocks

Mode 1/Submode 1
Mode $3 /$ Submode 1
Mode $1 /$ Submode 2
B. Optional Blocks

Mode 1 /Submode 3
Mode $1 /$ Submode 6
Mode 3/Submode 20
Mode 3/Submode 21
Mode 3/Submode 22
Mode 3/Submode 23
Mode 3/Submode 30
C. Note: Mode $3 /$ Submode 21 or Mode $3 /$ Submode 22 is required if the format of the data presented in Mode 3/Submode 1 has not been specified external to the product by mutual agreement of the exchanging agencies controlling the weather information systems involved in the data exchange.
3.4.1.3. Vector Graphic Product Data Category
A. Required Blocks

Mode 1/Submode 1
Mode $1 /$ Submode 2
One of the following:
Mode 4/Submode 20
Mode 4/Submode 30
One or more of any selected one of the following:

Mode 4/Submode 1
Mode 4/Submode 2
Mode 4/Submode 3
Mode 4/Submode 5
Mode 4/Submode 6
B. Optional Blocks

Mode 1/Submode 3
Mode 1/Submode 4 Mode 1/Submode 6 Mode 1/Submode 7 Mode 4/Submode 4 Mode 4/Submode 7 Mode 4/Submode 10

Mode 5/Submode 1
Mode 5/Submode 2
Mode 5/Submode 3
3.4.1.4. Alphanumeric Product Data Category
A. Required Blocks

Mode 1 /Submode 1
Mode 5/Submode 4
Mode 1/Submode 2
B. Optional Blocks

Mode 1/Submode 3
Mode 5/Submode 20

3.4.1.5. Raster Product Data Category

A. Required Blocks

Mode 1/Submode 1
One or both of the following:
Mode 6/Submode 20
Mode 6/Submode 30
Mode 6/Submode 1
Mode $1 /$ Submode 2
B. Optional Blocks

Mode $1 /$ Submode 3
Mode 1/Submode 5
C. Note: Mode 1/Submode 5 is required if the data presented in Mode 6/Submode 1 has not been specified external to the product as a default datawidth and fieldwidth by mutual agreement of the exchanging agencies controlling the weather information systems involved in the data exchange.
3.4.1.6. Gridded (Packed) Product Data Category
A. Required Blocks

Mode 1/Submode 1
Mode 7/Submode 20
Mode 7/Submode 1
Mode 1/Submode 2

$$
3-4
$$

B. Optional Blocks

Mode 1 /Submode 3
Mode $1 /$ Submode 5
Mode 1/Submode 6
C. Note: Mode $1 /$ Submode 5 is required if the data presented in Mode $7 /$ Submode 1 has not been specified external to the product as a default datawidth and fieldwidth by mutual agreement of the exchanging agencies controlling the weather information systems involved in the data exchange.
3.4.1.7. Gridded (Unpacked) Product Data Category
A. Required Blocks

Mode 1 /Submode 1
Mode 7 /Submode 20
Mode 3/Submode 1
Mode $1 /$ Submode 2
B. Optional Blocks

Mode 1/Submode 3
Mode 1/Submode 6
Mode 3/Submode 21
3.4.2. Allowable Mode/Submode Combinations. Table 3.4 summarizes the allowable combinations of defined modes and submodes for the various mode designations.

Table 3-1 Key to Mode/Submode Designations

| Number (Octa7) | |
| :--- | :--- | | Type of Information | |
| :--- | :--- |
| Modes | 001-002 |

Submodes 001-007

Submodes 001-017
020, 030,

021-027, , 071-077

100-377

Control or Data Blocks

Data Blocks (DB)
Product Definition Blocks (PDB)

Data Description Blocks (DDB) associated with PDB,
(e.g., 21-27 => 20)

Unassigned, to be designated if the assigned ranges are exhausted.

Table 3-2. Assigned Mode Designations

Mode (Octal)	Definition
001	Product Data Set Control
002	Systems Data
003	Formatted Binary*
004	Vector Graphic
005	Alphanumeric
006	Raster Scan
007	Gridded*

*Note: Packed gridded data is accommodated under Mode 7, unpacked gridded data is accommodated under Mode 3.

Table 3-3. Assigned Submode Designations

Description

Mode 1 Product Data Set Control

Product Identification Block	1	$4-1$
End of Product Block	2	$4-2$
Classification Block	3	$4-3$
Define Plot Parameters Block	4	$4-4$
Define Datawidth/Fieldwidth Block	5	$4-5$
Product Information Block	6	$4-6$
Line Information Block	7	$4-7$

Mode 2 Systems Data
Binary Data Blocks User Definable 5-1

Mode 3 Formatted Binary
Formatted Binary Product Definition 20 6-1 Block
Formatted Binary Data Description 21
Block, Option 1
Formatted Binary Data Description 6-3
Block, Option 2
Formatted Binary Data Block 1
Formatted Binary Sequence Block 23
Satellite Product definition Block 6-6

Mode 4 Vector Graphic
Graphics Product Definition Block 20 7-1
Define Graphics Parameters Block 30 7-2
Absolute Vectors 1 7-3
Relative Vectors 2 7-4
CPC Vectors Block 3 7-5
Variable Exception Vectors (VEV) Block 4 7-6
Long/Short Relative Vectors Block 5 7-7
Point/Slope Vectors Block 6
Wind Barbs Vectors Block $\quad 7 \quad 7-9$
Vector (Arrow) Plot Block 10 7-10

Table 3-3. (Cont.) Assigned Submode Designations
Description $\quad \frac{\text { Submode }}{\text { (Octal) Eigure No. }}$

Mode 5 Alphanumeric

Alphanumeric Product Definition Block 20
Alphanumeric Character Block 1
Data Plot Block 2
Wind Barbs Data Block 3
Alphanumeric Data Block 4

Mode 6 Raster Scan
Satellite Product Definition Block 20
Pixel Product Definition Block 30
Raster Scan Data Block
1
9-1
9-2
9-3

Mode 7 Gridded
Gridded Product Definition Block 20
10-1 Band Index Data Block* 1 10-2
*Packed gridded products. See Chapter 10.

Table 3-4. Allowable Mode/Submode Combinations

Mode Submode	Product Data Category	
	$\underline{\text { Systems }}$Formatted Vector Graphic A/N Raster Gridded	

Product Data Set Control

$1 / 1$	r	r	r	r	r	r
$1 / 2$	r	r	r	r	r	r
$1 / 3$	0	0	0	0	0	0
$1 / 4$					0	
$1 / 5$		0	0		0	0
$1 / 6$			0		0	
$1 / 7$			0			

Systems Data
2/User
Defined r
Formatted Binary

$3 / 1$	r	$r(2)$
$3 / 20$	0	$0(2)$
$3 / 21$	0	
$3 / 22$	$0(4)$	
$3 / 23$	0	
$3 / 30$	0	

Vector Graphic

$4 / 1$	$r(3)$
$4 / 2$	$r(3)$
$4 / 3$	$r(3)$
$4 / 4$	0
$4 / 5$	$r(3)$
$4 / 6$	0
$4 / 7$	0
$4 / 10$	$r(3)$
$4 / 20$	$r(3)$

Table 3-4. (Cont.) Allowable Mode/Submode Combinations

Mode Submode Product Data Category			
	$\underline{\text { Systems }}$ Formatted	$\underline{\text { Vector }} \quad$ Binary	$\underline{\text { Graphic }}$

Alphanumeric

5/1
5/2
5/3 5/4
5/20
Raster Scan

$$
\begin{aligned}
& 6 / 1 \\
& 6 / 20 \\
& 6 / 30
\end{aligned}
$$

r
0

Gridded (Packed)
$7 / 1$
r (1)
7/20
r
Gridded (Unpacked)
3/1
7/20
3/21
r
0 (2)

NOTES:
r - Mode/submode is required

- - Mode/submode is optional
(1) - Used in packed gridded products.
(2) - Used in unpacked gridded products.
(3) - Only one of these mode/submodes will be used.
(4) - Used in formatted mixed products.
(5) - For a non-satellite image, only $6 / 30$ shall be used. For a satellite image, either $6 / 20$ or $6 / 30$ or both shall be used.

CHAPTER 4

CONTROL BLOCKS

4.1. Product Identification Block. This block is required for all data types and shall be formatted as shown in Figure 4-1. The data field shall identify the origin of the product, the classification, retention time, product identifier, and file time. These fields shall be as defined in Figure 4-1 except as otherwise noted below or under individual data type format discussions.
4.2. End of Product Block. The End of Product Block format is shown in Figure 4-2. This block shall be standard for all data types.
4.3. Classification Block. The Classification Block format is shown in Figure 4-3. This block shall be used if additional information regarding the classification of the product data set (other than that information provided in the CLASSIFICATION byte of the Product Identification Block - Figure 4-1) is required.
4.4. Define Plot Parameters Block. This block shall be formatted as shown in Figure 4-4. When used, the fields required will be filled and all other fields will be either zero or blank filled, unless the length is used to foreshorten the block when the latter fields are not needed. IF LENGTH is not used, the full format is required. The Define Plot Parameters Block may be used prior to any data block to indicate the settings of display parameters. Once set, the parameters remain in that state until superseded by another Define Plot Parameters Block.
4.5. Define Datawidth/Fieldwidth Block. The Define Datawidth/Fieldwidth Block shall be formatted as shown in Figure 4-5. It may be used to redefine the number of bits allocated to (field width) and used by (data width) each data element in the specified mode/submode. The following rules shall apply to the use of this block:
A. Redefined Datawidth/Fieldwidth values shall not apply to the LENGTH, MODE, SUBMODE, CHECKSUM, or other informational elements in the specified Mode/Submode, i.e., redefined values apply only to the data itself.
B. Redefined values shall remain in effect for all subsequent blocks with the specified Mode/Submode until reset by another Define Datawidth/Fieldwidth Block or End of Product Block, whichever comes first in the product data set sequence.
C. The Define Datawidth/Fieldwidth Block may be inserted anywhere in the product data set but applies only to the blocks that immediately follow it in the product data set sequence.
D. Each block may be used to redefine values for one Mode/Submode. Additional blocks may be used, as required, to redefine values for additional mode/submode blocks. However, these blocks must be inserted immediately before the Mode/Submode to which the redefined Fieldwidth and Datawidth apply.
4.6. Product Information Block. The Product Information Block shall be formatted as shown in Figure 4-6. Use of this block allows entry of the product base date and time, and also the identifier program of the model which was used to generate the product. With appropriate use of the LENGTH, the Base Date/Time may appear alone in the block. This block is intended to appear only once within any product.
4.7. Line Information Block. The Line Information Block shall be formatted as shown in Figure 4-7. It is intended to be used optionally preceding any type of vector block. When the Line Information Block is present, it assigns a labeling value to the displayable line. This block must immediately precede the vector block which it describes. The definition it established remains in effect only for the vector block which immediately follows it.

Figure 4-1. Product Identification Block; Mode 1, Submode 1

NOTES: Figure 4-1: Product Identification Block; Mode 1, Submode 1

1. Originator Identification: A four character identifier of the facility that generates or compiles the product.
2. CLASSIFICATION: The classification code is a single ASCII character defining the classification for this product as follows:
```
U = Unclassified
C = Confidential
S = Secret
T = Top Secret
E = Encrypt for Transmission Only (EFTO)
```

If additional information is required, a classification Block shall be used. (Section 4.3.)
3. RETENTION TIME: The RETENTION TIME is the default time, in days, the system shall use to retain the product before purging it. This byte will contain 377 (octal) or all binary zeros when this value is not furnished.
4. Product Identifier: The FILE INDICATOR byte plus the succeeding nine ASCII character bytes contain the Product Identifier. The FILE INDICATOR byte (an 8 bit binary value) specifies the naming convention used to identify the product. The Product Identifier is defined as follows:

Characters/ bytes	Definition 1
File Indicator determines originating agency. See Appendix D, Table D-1.	
6-5	Catalog Number (See Appendix D, Table D-2). $9-10$
Three character number representing the time in hours from product generation time.	
	Two ASCII characters defined for products that are transmitted with out a background. Interagency common background descriptions are used. See Appendix C, Table C2-1.)

5. Product File Time: The Product File Time shall consist of a full century year (16 bit integer), month, day, hour, and minute (8 bit integers). It represents a means of further identifying products with identical Product Identifiers. Unless otherwise specified, this time shall be the date/time the product was generated.

FF	LENGTH (I)		
CHECKSUM			
001			

Figure 4-2. End of Product Block; Mode 1, Submode 2

FF	LENGTH (I)		
	001		003
	CHARACTER		CHARACTER 2
	CHARACTER	3	CHARACTER 4
			LAST CHARACTER
CHECKSUM			

NOTES: Figure 4-3

1. CHARACTER: The information in ASCII code.
2. This block follows the rules for non-graphic blocks. See Section 2.2.3.2.

Figure 4-3. Classification Block; Mode 1, Submode 3

$$
4-5
$$

FF	LENGTH (I)		
	001	004	
Z	ZOOM THRESHOLD	ZOOM FACTOR	
	PLOT COLOR	BACKGROUND COLOR	
	LINE CHARACTER	LINE WIDTH	
	CHARACTER 1	CHARACTER 2	
	CHARACTER 3	CHARACTER 4	
LOG	ICAL FILL (R/L)	FILL PATTERN NO.	
CHECKSUM			

NOTES:

1. Z: Zoom Disable: If $Z=1$, the displayable data will be invariant in display size regardless of zoom selection. If $Z=0$ displayed data are sized according to zoom selection.
2. ZOOM THRESHOLD: The ZOOM THRESHOLD is the minimum magnification that may be applied to the product within the constraints of the data density from which the product was built. This value is the denominator of the fractional area of the entire viewing space. Currently assigned codes (decimal) which are representative of the zoom value are:

00 - Display at all zoom levels (default)
01 - Display at $1 X$ or higher magnification
02 - Display at $2 X$ or higher magnification
03 - Display at $3 X$ or higher magnification
.
16 - Display at $16 X$ or higher magnification
3. ZOOM FACTOR: An optional zoom (magnification) factor to be assigned to strings selectively at a local level. These values range from 0-255 (decimal).

```
0 - No zoom (default)
1-1X
2-2X
3-3x
.
```

Figure 4-4. Define Plot Parameters Block; Mode 1, Submode 4

NOTES: Figure 4-4 (Cont.):
4. PLOT COLOR and BACKGROUND COLOR: These values range from 0 to 255 (decimal). Application of National Institute of Standards and Technologies (NIST) color standards is to be determined.
5. LINE CHARACTER: Assigned values are:

0 - Continuous (default)
1 - Dotted line (alternate pixels)
2 - Dashed line (short dashes)
3 - Dashed line (long dashes)
4 - Dotted line (every 4 th pixel)
5 - Symbolic line
6. LINE WIDTH: This value indicates the thickness of line in pixels.
7. Line Mnemonic: Line mnemonics are specified in Tables A2-1 and A2-2.
8. LOGICAL FILL (R / L) : A flag which indicates whether fill is to be done on the Right or on the Left side of the vector string as it proceeds. If no fill is to be used, this value is set to zero (the default value). Numbers in the renge 1 to 127 indicate fill is to be made on the right. Numbers in the range 128 to 255 indicate fill is to be made on the left. Numbers may be chosen within each range to specify a fill algorithm or manner of execution.
9. FILL PATTERN NO.: A preassigned value which specifies the type of pattern to be used in the fill area. A value of zero is used if no fill is being specified (the default value). Pattern numbers are to be assigned by interagency agreement.
10. Values defined by this submode are effective on all subsequent modes until redefined.
9. This block can be shortened by using a LENGTH value less than the maximum number of byte pairs shown in the figure. The fields past the LENGTH count will be truncated and the information they control not changed.

Figure 4-4. (Cont.) Define Plot Parameters Block; Mode 1, Submode 4

FF	LENGTH (I)		
001			005
f	FIELDWIDTH	d	DATAWIDTH
MODE			
CHECKSUM			
SUBMODE			

NOTES:

1. f: If this bit is set, the data will be continuous and cross byte and byte/pair boundaries.
2. FIELDWIDTH: An integer number that defines the number of bits allocated to each data element in the specified mode/submode. The legal range is 1 through 16 (decimal).
3. d: When this bit is set, the data will be left justified in the field defined by FIELDWIDTH; i.e., empty spaces will trail the data.
4. DATAWIDTH: An integer number that defines the number of bits used by the actual data within the FIELDWIDTH. The legal range is 1 through FIELDWIDTH. Example: If the data are three bits wide and are repeated every four bits, then FIELDWIDTH $=4$, DATAWIDTH $=3$.
5. MODE and SUBMODE: The mode and submode to which the redefined fieldwidth and datawidth apply.

Figure 4-5. Define Datawidth/Fieldwidth Block; Mode 1, Submode 5

NOTES:

1. Base Date/Time: An eight character ASCII field which specifies the Greenwich Mean Time the product is based on. Characters 1 and 2 give the two digit hour of the 24 hour clock. Characters 3 and 4 are the two digit date of the month. Characters 5 and 6 are the two digit month in the range 01-12. Characters 7 and 8 give the units and tens digit of the year. This is always an eight character field.
2. Originating Model or Program. A variable length string of ASCII characters used to specify the process which generated the product. If LENGTH field has been shortened in the block, then this field is omitted entirely.
3. This block should appear only once with a product.

Figure 4-6. Product Information Block; Mode 1, Submode 6

NOTES:

1. Line Value of Labeling Purposes: A variable length string of ASCII characters which assigns a value (label) to the vector string which follows this block. Only the required number of characters to hold the label will be used. If there are an odd number of characters, the final character will be blank. The line label assigned by this block will remain in force only for the vector block which immediately follows it. If another vector block follows the first with no preceding Line Information Block, it will be assumed to be an unlabeled line.
2. This block is assumed to precede any vector block which is required to be labeled as part of the line display process.

Figure 4-7. Line Information Block; Mode 1, Submode 7

CHAPTER 5

SYSTEMS DATA
5.1. General Information. This mode is provided to support the transmission of system or application binary data. The submodes are user definable internally within the user system and not intended for any other agency use.
5.2. Binary Data Block. The format for this block is depicted in Figure 5-1. No Product Definition or Data Description blocks are necessary with this data block.

Figure 5-1. Binary Data Block; Mode 2, Submode "n"

FORMATTED BINARY BLOCKS

6.1. Product Definition Block. This block shall be an 18 byte block, including the LENGTH and CHECKSUM fields. The specific format and content shall be as shown in Figure 6-1.
6.2. Satellite Product Definition Block. This block shall be a 22 byte block, including the LENGTH and CHECKSUM fields. This block is designed to define data organized by orbit. The specific format and content shall be as shown in Figure 6-6.
6.3. Data Description Block. The Formatted Binary Data Description blocks, (Option 1 and Option 2) shown in Figure 6-2 and in Figure 6-3, act as data interpretation tables for the data in the following binary data block(s). They describe the data in the Formatted Binary Data block(s) in sufficient detail to allow the receiver to use the data. The length of the description blocks shall depend on the number of repeating data sections required to define the product. (See Note 3 for Figure 6-2 or Figure 6-3.)
6.4. Data Block. The Formatted Binary Data block shall be formatted as shown in Figure 6-4. The data field shall be formatted as specified in the Formatted Binary Data Description blocks, Option 1 or Option 2, whichever is appropriate.
6.5. Presentation of Formatted Binary Data. While the data description blocks serve as data interpretation tables for the data block(s) which may follow, there are a number of ways for presentation of element data in the formatted binary data block. Most element data lends itself to numeric (binary) presentation (e.g., temperature, heights, etc.) while other element data lends itself to presentation as ASCII characters (e.g., station ICAO call letters, present weather). Agencies have some flexibility in choosing an element data presentation method and the user of these products needs to be aware of the method or methods being employed. The following are examples of possible implementations.
A. WMO Block and Station Number: The data description block would show two element mnemonics, one for WMO Block Number (BLK) and one for WMO Station Number (STN). These data could be presented in the data block as 2- and 3-byte ASCII characters or as 1- and 2-byte numeric characters. The user can determine the method of presentation by testing on the "Number of Bytes per Element" - byte in the description block.
B. Present Weather: The data description block would show one of the three present weather mnemonics (WW1, WW2, WW3). The data could be presented in the data block as a numeric code value, following the WMO WW numbering scheme (0-99), or as ASCII characters using the accepted meteorological
abbreviations (e.g., RW, K, etc.). The numeric presentation can be done in one byte in the data block but the ASCII presentation must be done in three bytes. Once again, the user can determine the method of presentation by testing on the "Number of Bytes per Element" - byte in the data description block.
C. Barometric Characteristic: The data description block would show BC as the element mnemonic. Table A2-2 shows that the data would be reported in ASCII form as BCO through BC8, corresponding to the nine possible reported code values (0 through 8). This ASCII presentation would require three bytes in the data block. The actual code value of 0 through 8 could also be reported as a one-byte numeric value, scaled with a multiplier of one and additive constant of zero. The USAF has chosen a third method using a special data block data code of 160 through 168 (decimal) numeric (see Table A2-2), which also take one byte in the data block. However, this code is not considered to be a scaled numeric value, therefore, the multiplier mantissa and characteristic and additive constant are all zero. This logic can be used to determine the method of presentation.
D. Cloud Amount: The data description block could show CTA (total cloud amount), L1A - L4A (layer cloud amount), C1A C3A (layer cloud amount), CLA, CMA, CHA (low, middle, and high cloud amount), or SKY (sky cover). The data could be presented in the data block as a three-character ASCII string (CAM, CLR, SCT, BKN, OVC, OBS, CAO - CA9). The data could also be presented as a one-byte numeric value indicating the eighths or tenths of cloud cover or as a percent of cover, with units code and scaling factor being the discriminator. The USAF has chosen a third method using a special data block data code of 149 through 159 (decimal) numeric (see Table A2-2), which also takes one byte in the data block. As with barometric characteristic, this USAF code is not considered to be a scaled numeric value, therefore, the multiplier mantissa and characteristic and additive constant are all zero.
E. Cloud Type, Past Weather, Ship Direction: The data description block could show CLT, CMT, CHT, CT, C1T, C2T, C3T, L1T - L4T, PWX, SD, or SDD for these elements. The data could be shown in three bytes in the data block as ASCII characters, as listed in Table A2-1. The USAF has chosen special data block data codes, which take one byte in the data block, for reporting the element value (Table

A2-2). As with the other special data block data codes, these codes are not considered to be scaled numeric values so the multiplier mantissas and characteristics and additive constants are all zero.
6.5.1. Formatted Mixed Data. The Formatted Binary Data Description Block, Option 2 (Figure 6-3), has been provided to handle the transfer of Profiler and Profiler-related data among both Government and non-Government agencies. It permits mixed numerical representations (two's complement integer, ASCII, IEEE floating point, etc.) and array lengths within the same data block. This means that a data producer can send header information, data elements, and data arrays; use any defined data representation; and send data in any order.
6.6. Data Sequence Block. The Formatted Binary Sequence Block saves needless repeating of Formatted Binary Data Description Blocks within a mix of types of Formatted Binary Data Blocks.

The Data Sequence Block (Mode 3, Submode 23), Figure 6-5, preceded Data Description Blocks (Mode 3, Submode 21) which precede a repeating mix of types of Data Blocks (Mode 3, Submode 1). The Data Sequence Block describes sequences of Data Blocks which follow matched to the corresponding Data Description Blocks for each type Data Block.

FF	LENGTH (I)		$]^{\text {Station Call }} \begin{aligned} & \text { Letters } \\ & \text { (ICAO) } \end{aligned}$
	003	020	
	CHARACTER 1	CHARACTER 2	
	CHARACTER 3	CHARACTER 4	
WMO BLOCK NUMBER (I)			
STATION NUMBER (I)			
LATITUDE I			
LONGITUDE I			
CHECKSUM			

NOTES:

1. Station Call Letters: The International Civil Aviation Organization (ICAO) identification of the originator station.
2. WMO BLOCK NUMBER: A two digit identifier of a section of the earth based on a system developed by the World Meteorological Organization (WMO).
3. STATION NUMBER: A three digit station identification within the region identified by the WMO BLOCK NUMBER.
4. LATITUDE, LONGITUDE I: Latitude and Longitude must be multiplied by .01 to get the actual value. Negative latitude indicates South, negative longitude indicates East.

Figure 6-1 Formatted Binary Product Definition Block; Mode 3, Submode 20

NOTES: This block is also used for unpacked gridded products.

1. NUMBER OF ELEMENTS: The number of elements contained in each section of the data block. This field indicates the number of 12 byte repeating sections in the data description block.
2. NUMBER OF BYTES/SECTION: Total number of bytes contained in a repeating section. This is the number of bytes that must be skipped to read a given element from each repeating section.
3. NUMBER OF SECTIONS: The total number of repeating sections in the data block.

Figure 6-2 Formatted Binary Data Description Block, Option 1; Mode 3, Submode 21

$$
6-5
$$

NOTES: Figure 6-2 (con't).
4. ELEMENT MNEMONIC: A character set that identifies the element being described. Tables A2-1 and A2-2 (Appendix A) contain the mnemonics lists.
5. START BYTE: The byte number in the data block where the first occurrence of the element can be found. Succeeding occurrences of the element can be found by successively adding the number of bytes per section to the start byte number.
6. NUMBER OF BYTES/ELEMENT: The number of bytes in the data block occupied by the element.
7. UNITS CODE: A code specifying the units of the data elements. The list of units codes is found in Table C2-4 (Appendix C).
8. MULTIPLIER MANTISSA: Integer constant to be multiplied by the element value to obtain the actual value of the element. Used in conjunction with the multiplier characteristic.
9. MULTIPLIER CHARACTERISTIC: Exponent of 10 to be used with the multiplier mantissa to obtain the true value of the element.
10. ADDITIVE CONSTANT: Integer constant to be added to the element value to obtain the true value of the element.
11. The ninth through twentieth bytes are repeated for each element in the data type being transmitted. These 12 bytes may be repeated for up to 256 parameters (0-255). The actual number of 12 byte fields required depends on the data being transmitted.
12. The actual value of the element is calculated as shown below:

Mult.Char.
$\begin{aligned} \text { Actual Value }= & \text { Element Value * Mult. Mantissa } * 10 \\ & + \text { Additive Constant }\end{aligned}$

Figure 6-2 (Cont.) Formatted Binary Data Description Block, Option 1; Mode 3, Submode 21

FF	LENGTH (I)		ELEMENT SET MNEMONIC
003		022	
NUMBER OF ELEMENT SETS			
NUMBER OF BYTES/SECTION			
NUMBER OF SECTIONS			
CHARACTER 1		CHARACTER 2	
	TER 3	CHARACTER 4	
	STA		
	NUMBER	/ELEMENT SET	
	NUMBER	/ELEMENT	
DAT	P. CODE	UNITS CODE	
MUL	IANTISSA	MULT. CHAR.	
	ADDITIV	TANT	
	CTER 1		
	Repeated	iptor bytes	
	ADDITI	StANT	

NOTES: Figure 6-3: This block is used for formatted mixed data such as two's complement integer, ASCII, IEEE floating point, etc. and array lengths.

1. NUMBER OF ELEMENT SETS: The number of element sets (an element set is either one element or an array of elements) contained in each repeating section of the data block(s). This field indicates the number of 16 byte repeating descriptors in the data description block.

Figure 6-3 Formatted Binary Data Description Block, Option 2; Mode 3, Submode 22

NOTES: Figure 6-3 (Cont.):
2. NUMBER OF BYTES/SECTION: Total number of bytes contained in a repeating section. This is the number of bytes that must be skipped to read the first element of a given element set from each repeating section.
3. NUMBER OF SECTIONS: The total number of repeating sections in the data block(s).

The remaining parts of the data description block are the repeating descriptors described in Note 1.
4. ELEMENT SET MNEMONIC: A four-character set that identifies the element set being described. Tables A2-1 and A2-2 of the reference contain these mnemonics.
5. START BYTE: The byte number in the data block where the first occurrence of the element set can be found. Succeeding occurrences of the element set can be found by successively adding the number of bytes per section to the start byte number.
6. NUMBER OF BYTES/ELEMENT SET: The number of bytes in the data block occupied by the element set.
7. NUMBER OF BYTES/ELEMENT: The number of bytes in the data block occupied by each element of the set. (If this is equal to the NUMBER OF BYTES/ELEMENT SET, then this element is not an array.)
8. DATA REPRESENTATION CODE: A code specifying the representation type of the element. Table C2-5 (Appendix C) lists the codes. Examples of data representation are two's complement integer, Floating point, or ASCII.
9. UNITS CODE: A code specifying the units of the data elements. Table C2-4 (Appendix C) contains these codes.
10. MULTIPLIER MANTISSA: Integer constant to be multiplied by the element value to.obtain the actual value of the element. Used in conjunction with the multiplier characteristic.
11. MULTIPLIER CHARACTERISTIC: Exponent of 10 to be used with the multiplier mantissa to obtain the true value of the element.
12. ADDITIVE CONSTANT: Integer constant to be added to the element value to obtain the true value of the element.

Figure 6-3 Formatted Binary Data Description Block, Option 2; Mode 3, Submode 22

NOTE: This block is also used for unpacked gridded data.

Figure 6-4 Formatted Binary Data Block; Mode 3, Submode 1

$$
6-9
$$

NOTES:

1. NUMBER OF DDBs: The total number of Formatted Binary Data Description Blocks (DDB) (Mode 3, Submode 21) immediately following the Data Sequence Block. ' (This number also corresponds to the number of Formatted Binary Data Block (Mode 3, Submode l) types which follow.)
2. START/END: Indicator for DDB sequence start or end. $\operatorname{START}=173$ (octal) (ASCII left brace). END = 175 (octal) (ASCII right brace). Each START indicator for a sequence (e.g., sequence x, sequence y, etc.) must have a matching END indicator. See Note 1.
3. DDB NUMBER: Relative number identifying this DDB within the total DDB set (e.g., DDB NUMBER two of five. The DDB NUMBER is two; the NUMBER OF DDBs is five).

Figure 6-5. Formatted Binary Sequence Block; Mode 3, Submode 23

$$
6-10
$$

NOTES: Figure 6-5 (Cont.)
4. NUMBER OF DATA BLOCKS: The total number of Formatted Binary Data Blocks (Mode 3, Submode 1) included within this sequence (x), (y), (z), etc. The number of data blocks is specified in the NUMBER OF DATA BLOCKS byte pair immediately following the START/DDB NUMBER byte pair for each sequence. The referenced Data Blocks' content correspond to the DDB for this sequence.
5. The START/END sequence is the key to using the Data Sequence Block. Six bytes define each sequence: START (173 octal), DDB NUMBER (x), NUMBER OF DATA BLOCKS, END (175 octal), DDB NUMBER (x). Depending on this six byte ordering for sequences $(x),(y),(z)$, etc., once can describe sequential or nested Data Block repeat patterns. (Describing sequential or nested patterns is like computer program Do Loops.)
6. For example, in Figure 6-5, the START/END sequence (y) and (z) are nested sequentially within START/END sequence (x). Specifically, Figure 6-5 describes sending the first type (x) data block, sequentially followed by a specified number of (y) type data blocks, sequentially followed by a specified number of (z) type data blocks. The data block pattern begins again with the next (x) type data block continuing in the manner previously described until the Data Sequence Block is satisfied. (If desired, and End of Product Block (Mode 1, Submode 2) could immediately terminate the sequence.)

```
Figure 6-5. (Cont.) Formatted Binary Sequence Block;
    Mode 3, Submode 23
```

FF	LENGTH (I)	
SATELLITE SERIES		
SATELLITE ID NUMBER		
START ORBIT 1		START ORBIT 2
START ORBIT 3	START ORBIT 4	
END ORBIT NUMBER		
START TIME : DAY OF YEAR		
START TIME: HOUR	START TIME: MINUTE	
END TIME: HOUR	END TIME: MINUTE	
CHECKSUM		

NOTES:

1. SATELLITE SERIES: Two letter satellite ID in ASCII coded format.
2. SATELLITE ID NUMBER: Two numeric characters in ASCII coded format. This is the numeric code corresponding to SATELLITE SERIES. The following table cross-references SATELLITE SERIES to SATELLITE ID NUMBER:

NOAA	Corresponding
SATELLITE	SATELLITE ID
SERIES	NUMBER

$T N$	01
$N A$	02
$N C$	04
$N E$	06
$N F$	07
$N G$	08
$N H$	09
$N I$	10
$N J$	11

Figure 6-6. Satellite Product Definition Block: Mode 3, Submode 30

NOTES: Figure 6-6 (Cont.)
NESDIS S/C ID
Air Force DMSP S/C ID 8541 for DMSP SATELLITES 01
9543 0542 02
03
For DMSP satellites, NESDIS S/C ID is inserted in SATELLITE SERIES (word 3) and SATELLITE ID NUMBER (word 4).
3. START ORBIT - 4 Character ASCII.

For TOVS, use the Superswath number from first data record.
For DMSP, use the orbit number from the first data record.
4. END ORBIT NUMBER - 2 Character ASCII (numeric - modulo 100). Use Superswath number (or Orbit Number for DMSP) from last sounding record.
5. START TIME : DAY OF YEAR - Julian Day in two byte integer. Use start date from first sounding record.
6. START TIME : HOUR - One byte integer.
7. START TIME : MINUTE - One byte integer.
8. END TIME : HOUR - One byte integer from last sounding record.
9. END TIME : MINUTE - One byte integer from last sounding record.

Figure 6-6. (Cont.) Satellite Product Definition Block: Mode 3, Submode 30

6-13

CHAPTER 7

VECTOR GRAPHIC BLOCKS

7.1. Product Definition Blocks. One of the following product definition blocks (the Vector Graphic Product Definition Block or the Define Graphics Parameters Product Definition Block) must be used to define the product. A product data set contains only one of the Product Definition blocks.
7.1.1. Vector Graphic Product Definition Block. The specific format and information content shall be as shown in Figure 7.1. Most vector graphic data is transmitted so that each point can be registered to its true earth location (latitude/longitude) or to Cartesian coordinates. Specifically, the earth locatable vector graphic data applies to the vector lines (isopleths, geopolitical lines and latitude/longitude lines), data plots, and wind barbs, and line labels. Other data to further describe the product, such as legends, are registered with respect to product locations (e.g., upper left hand corner) rather than to earth locations. This data may include line labels and legends.
7.1.1.1. Product Area. The AREA CODE and SCALE elements define the area of the product to the display device. The AREA CODE shall specify the number and location of the point(s) used to define the product area. When one point is used, the SCALE must also be used for area definition.
7.1.1.2. Registration. Registration to the display device may be accomplished by applying the reference latitudes and longitudes in accordance with the AREA CODE specification. Registration of the product to background information is accomplished through the PI set. If $\mathrm{PI}=0$, the appropriate background data is sent with the product or the product is not geographical in nature. Otherwise background data resident in the receiving system is to be used.
7.1.2. Define Graphics Parameters Product Definition Block. This block shall be formatted as shown in Figure 7-2. This product definition block is similar to the Vector Graphic Product Definition Block except that it contains additional information to allow contouring at the user site. Normalized values of a contour are provided to allow calculation of successive contours.
7.2. Data Description Blocks. No data description blocks are currently used for the Vector Graphic products.
7.3. Data Blocks. The Vector Graphic data blocks shall be formatted as shown in Figures 7-3 through 7-10 defined in the following sections.
7.3.1. Absolute Vectors Block. This block shall be formatted as shown in Figure 7-3. Each block shall contain coordinates of the vector end points that define one line on the product. If the length of the line requires more vectors than can be contained in a single block, additional blocks shall be used with the starting M/N coordinates set to the last M/N coordinate of the proceeding block. One or more data blocks may follow, as required to define all lines on the product.

Abstract

7.3.2. Relative Vectors Block. This block shall be formatted as shown in Figure 7-4. Each block shall contain vector pairs (with coordinates as specified by the coordinate flag in the product definition block) that define one line on the product. This block is used to transmit lines consisting of only short vectors, i.e., vectors for which the vector deltas can be put in one byte. If the length of the line requires more vectors than can be contained in a single block, additional blocks shall be used with the starting M/N coordinates set to the last M/N coordinate of the proceeding block. One or more data blocks may follow as required, to define all lines on the product.

7.3.3. "Calcomp Pen Command" (CPC) Vectors Block. This block shall be formatted as shown in Figure 7-5. This block contains a series of three bit direction vectors of unit length. If the length of the line requires more vectors than can be contained in a single block, additional blocks shall be used with the starting M/N coordinates set to the last M/N coordinate of the proceeding block. One or more data blocks may follow as required, to define all lines on the product.
7.3.4. Variable Exception Vectors (VEV) Block. This block shall be formatted as shown in Figure 7-6. The format provides a convenient method of packing vector graphic lines to conserve transmission time. Each vector graphic line is defined by a series of vectors whose lengths are given by the Increment Length (IL) and whose directions are given by changes dictated by the VEV data bits. The direction of the first increment in the vector graphic line is given by the initial direction (IDV) element. Starting with the most significant bit in the first byte of the VEV data bits, each bit represents either a. trend (continue in the same direction) or an exception movement (change in direction) along successive vector increments. If the bit is zero (0), the movement is along the direction last established as the current trend direction. Initially, this is the direction defined by the initial direction element. For bit zero (0) and all other even numbered bits, if the bit is one, then the movement is turned counterclockwise by a 45 degree increment and the new direction is established as the current trend direction.

$$
7-2
$$

For bit one (1), and all successive odd-numbered bits, if the bit is one (1), then movement is turned clockwise 45 degrees and established as the new trend direction. This cycle continues until the bit count indicated by the VEV bit count element is exhausted.
7.3.5. Long/Short Relative Vectors Block. This block shall be formatted as shown in Figure 7-7. Each block shall contain vector pairs that define one line on the product. If the length of the line requires more vectors than can be contained in a single block, additional blocks shall be used with the M and N coordinate set to the end point of the last vector in the proceeding block. One or more additional blocks may follow, as required, to define all lines on the product. This block is used to transmit lines consisting of both vectors that can be put into one byte and vectors that require 16 bits.
7.3.6. Point-Slope Vectors Block. This block shall be formatted as shown in Figure 7-8. This block provides the minimum amount of information to draw a straight line. The information for only one line is sent with each block. One or more additional blocks may follow to define more lines on a product.
7.3.7. Wind Barbs Vectors Block. This block shall be formatted as shown in Figure 7-9. The block is used to transmit wind direction and speed in symbolic form. Multiple wind barbs may be transmitted in a single block. Additional blocks may be used, as required, to transmit all wind barbs associated with a product.
7.3.8. Vector (Arrow) Plot Block. This block shall be formatted as shown in Figure 7-10. This block contains a code for drawing arrows and numerical values at point locations on a product. One or more data blocks may follow to define all arrows on a product.
7.3.9. Center Radius Arc Vector Block. This block shall be formatted as shown in Figure 7-11. Each block contains joined continuous arcs. Each arc consists of a center point, a starting coordinate, and an ending coordinate. Therefore, the radius may vary from arc to arc. Each vector carries a "clockwise" flag which determines whether the arc is drawn clockwise or counterclockwise from the first coordinate to the second coordinate. Also, each vector contains a "blanking" flag so that selected arcs may remain blank on display.
7.3.10. Curve Vectors Block. This block shall be formatted as shown in Figure 7-12. Each block contains joined continuous arcs. Each arc consists of three coordinate points which must be curve fitted when displayed. Each vector contains a "blanking" flag so that selected arcs may remain blank on display.

Figure 7-1. Vector Graphic Product Definition Block; Mode 4, Submode 20

$$
7-4
$$

NOTES: Figure 7-1:

1. PI SET: The PI SET defines the background projection on which the product is valid. The codes are shown in Table C2-1. If a product is not associated with a background field, PI SET will be zero filled.
2. COORDINATE FLAG: Coordinate System Indicator as follows:

Elag	$\underline{M=}$	$\underline{N=}$	Latitude 0
1	I	J	Longitude (Earth surface grid in latitude and longitude coordinates)
(Cartesian coordinates of the			
earth's surface)			

3. SCALE FACTOR: The Scale Factor is the real world map scale in millions. The first byte contains the integer part and the second byte contains the fraction.
4. AREA CODE: The AREA CODE is an integer code that defines the relative product reference point(s) and scheme used to define the geographical area and product orientation. The currently defined codes are:

11 - One (1) reference point is used to define the upper left corner of the product.

12 - One (1) reference point is used to define the lower left corner of the product.

13 - One (1) reference point is used to define the center of the product.

21 - Two (2) reference points are used to define the upper left and upper right corners of the product.

22 - Two (2) reference points are used to define the lower left and upper right corners of the product.

23 - Two (2) reference points are used to define the upper left and center of the product.

Figure 7-1. Vector Graphic Product Definition Block; Mode 4, Submode 20

NOTES: Figure 7-1 (Cont.):

24 - Two (2) reference points are used. The first reference point gives the coordinates of the lower left corner of the product in units of the grid from which it was extracted. The second set of reference coordinates will give the maximum horizontal and maximum vertical size of the product in pixels (M maximum and N maximum).

25 - Same as code 24 except the reference point is located at the center of the product.

33 - Three (3) reference points are used to define the upper left, upper right, and lower right corners of the product.

34 - Two (2) reference points are used to define the lower left and upper right corners, respectively, of the product with respect to orientation the product would have if viewed on a display screen, and the third reference point defines the upper right corner of the logical display device.

When only one reference point is required, this block is shortened by two byte pairs; when two reference points are required the block is shortened by one byte pair.
5. LABEL CODE: If $\angle A B E L C O D E=0$, the label to be used with the product is not a standard label and the label will be sent in an alphanumeric block. For interagency use this field will be zero. If a standard label is to be used, the LABEL CODE will contain a code for that label. Label codes are user definable and unique to each system.
6. Reference Coordinates: The Reference Coordinates uniquely define the boundary and orientation of the product. M and N are determined by the COORDINATE FLAG above. If given in latitude/longitude, values will be in hundredths of a degree. If given in I / J or X / Y coordinates, values will be integers. These reference points will be in the order specified by the area code (e.g., for area code 33, the first point defines the upper left corner, the second the upper right corner and the third the lower right corner.)
7. Valid Time: The Valid Time is the time for which the product is valid. For analysis products, the valid time will be the time the data used to generate the product was observed. For forecast products, the valid time will be either the time in the future for which the forecast is valid or the start of the time period for which the forecast is valid. The End of Valid Period time indicates the termination time of the valid period. If the day element of the End of Valid Period is zero, the product is valid only at the valid time. If not, the product is valid for the period given.

Figure 7-1. Vector Graphic Product Definition Block; Mode 4, Submode 20

$$
7-6
$$

FF	LENGTH (I)	
	004	030
	PI SET	COORDINATE FLAG
SCALE FACTOR		
LONGITUDE X (HUNDREDTHS OF DEGREES)		
CONTOUR INTERVAL (I)		
CONTOUR INTERVAL (FRACTION)		
CONTOUR ORIGIN (I)		
CONTOUR ORIGIN (FRACTION)		
M MAXIMUM (I)		
N MAXIMUM (I)		
M CENTER		N CENTER
UNITS CODE		NCHAR (TITLE)
CHARACTER 1		CHARACTER 2
-		
LAST CHARACTER		
CHECKSUM		

Figure 7-2. Define Graphics Parameters Product Definition Block; Mode 4, Submode 30

$$
7-7
$$

NOTES: Figure 7-2:

1. PI SET: The PI SET defines the background projection on which the product is valid. Currently defined codes are shown in Table C2-1.
2. COORDINATE FLAG: Coordinate System Indicator as follows:

Flag	$\underline{M=}$	$\underline{N=}$
0	Latitude	Longitude
1	I	J
2	X	Y

(An earth surface grid in latitude and longitude coordinates.)
(Cartesian coordinates of the earth's surface.)
(Pixel coordinates of the product background projection.)
3. SCALE FACTOR: The Scale Factor is the real world map scale in millions. The first byte contains the integer part and the second byte contains the fraction.
4. LONGITUDE X : This is the longitude of the meridian perpendicular to the base of the product and extending from the base of the product to the pole. Longitude X may be outside of the product boundaries. Table C2-1 shows the Longitude X for the defined PI Sets (map projection). Longitude X is given in hundredths of degrees and must therefore be multiplied by .01 to obtain the true value.
5. CONTOUR INTERVAL and CONTOUR ORIGIN: The CONTOUR INTERVAL (CI) and CONTOUR ORIGIN (CO) are used to relate the Band Index (BI) value of the first contour in the product to the value of other contours in the product as follows:

$$
\text { Value }=B I * C I+C O
$$

The BI is sent in the Data B7ock.
6. M,N Maximum: The maximum horizontal and vertical size of the product. The type of coordinates are determined by the COORDINATE FLAG above.
7. M,N CENTER: The coordinates of the center of the product in units of the grid from which the product was originally extracted.
8. UNITS CODE: A code specifying the units of the contours in the product. The list of units is found in Table C2-4.
9. NCHAR: The number of characters in the product title.
10. CHARACTERs 1-n: The ASCII characters that make up the product title.

Figure 7-2. Define Graphics Parameters Product Definition Block; Mode 4, Submode 30

$$
7-8
$$

FF	LENGTH (I)		
	004		001
M COORDINATE			
N COORDINATE			
M COORDINATE (1)			
B	N COORDINATE (1)		
M COORDINATE (2)			
B	N COORDINATE (2)		

B COORDINATE (n)	
	N COORDINATE (n)

NOTES:

1. M,N COORDINATE: First set of coordinates of the line. M and N are determined by the COORDINATE FLAG in the Product Definition Block.
2. M,N COORDINATEs (n): Successive coordinates which form the line.
3. $B=$ Blanking Flag: If $B=0$, pen is up (beam off), and a new line starts. If $B=1$, pen is down (beam on), and a line is drawn between the coordinate pairs.

Figure 7-3. Absolute Vectors Block; Mode 4, Submode 1

$$
7-9
$$

NOTES:

1. M, N COORDINATE: Defines vector string starting point. $\quad M$ and N are determined by the COORDINATE FLAG in the Product Definition Block.
2. DELTA M,N Values: Successive values are added algebraically to the last computed M, N coordinate position to produce a series of vectors defining a line. The positive direction for M values is to the right, negative to the left. The positive direction for N values is up, negative is down. Negative values are entered in 2's complement notation.

Figure 7-4. Relative Vectors Block; Mode 4, Submode 2

FF	LENGTH (I)	
004		003
M COORDINATE		
N COORDINATE		
VECTOR COUNT (I)		
CPC VECTORS		
•		
•		
CHECKSUM		

NOTES:

1. M,N COORDINATE: Defines vector string starting point. M and N are determined by the COORDINATE FLAG in the Product Definition Block.
2. VECTOR COUNT: Number of vectors following.
3. CPC Vectors: Successive fields containing values defining the vector direction corresponding to the sketch below. The field width is variable depending on the Define Datawidth/Fieldwidth Block. The data width = 3. If there is no Datawidth/Fieldwidth Block, the default bit configuration is five 3 bit vectors, right justified in one byte pair, with the left bit equal to 0. To end on a byte pair boundary the last two bytes are zero filled if necessary.

4. The vector length is one pixel.

Figure 7-5. CPC Vectors Block; Mode 4, Submode 3

NOTES:

1. M,N COORDINATE: Defines vector string starting point. M and N are determined by the COORDINATE FLAG in the Product Definition Block.
2. BAND INDEX: The BAND INDEX (BI) is the normalized value of a contour or line, where $B I=$ (Value - Origin)/Interval. If BI is not used this field will contain 377 octal (all one bits).
3. IL = Increment Length: IL is the indicator for the incremental vector length (e.g., $1=1$ pixel, 2=2, 3=3, ..., 7=7).

Figure 7-6. Variable Exception Vectors (VEV) Block; Mode 4, Submode 4

$$
7-12
$$

NOTES Figure 7-6 (Cont.).
4. IDV = Initial Direction Vector: IDV values are 0 through 7 as represented in the sketch below:

Direction vector definition:

5. VEV BIT COUNT: The number of data bits following.
6. VEV BITS: The string of bits determining the VEV vectors. If this bit string does not fill the last byte pair, the remaining bits are set to zero to end on a byte pair boundary.

Figure 7-6. (Cont.) Variable Exception Vectors (VEV) Block; Mode 4, Submode 4

NOTES:

1. M, N COORDINATE: Defines vector string starting points. M and N are determined by the COORDINATE FLAG in the Product Definition Block.
2. Left-most Bit: If the left-most bit $=1$, the DELTA M and N are short (contained in one byte) vector values. If the left-most bit $=0$, the DELTA M and N are long (each contained in two bytes) vector values.
3. $B=$ Blanking Flag: \quad If $B=1$, no line is drawn between coordinate pairs. If $B=0$, the line is drawn.
4. X : This bit not used.
5. DELTA M, N: Each successive delta value is added algebraically to the last computed M, N coordinate position to produce a series of vectors defining a line. The positive direction for M values is to the right, negative is to the left. The positive direction for N values is up, negative is down. Negative values are entered in two's complement notation.

Figure 7-7. Long/Short Relative Vectors Block; Mode 4, Submode 5

$$
7-14
$$

FF	LENGTH (I)		
	004	006	
M COORDINATE			
N COORDINATE			
VECTOR LENGTH			
SLOPE			
CHECKSUM			

NOTES:

1. M, N COORDINATE: Defines vector string starting point. M and N are defined by the COORDINATE FLAG in the Product Definition Block.
2. VECTOR LENGTH: VECTOR LENGTH is the larger of the absolute values of the delta M and delta N differences for the two points between which the line is to be drawn.
3. SLOPE: SLOPE is the fractional value of the ratio (shorter delta)/(7onger delta). This value is multiplied by 2**12.
4. OCT: OCT is a four bit field and contains the value for an octant defined in the following sketch:

Figure 7-8. Point-Slope Vectors Block; Mode 4, Submode 6

NOTES:

1. SHAFT LENGTH: Number of pixels for the shaft line (from base to first barb).
2. M,N COORDINATE: Position of the base of the shaft. M and N are determined by the COORDINATE FLAG in the Product Definition Block.
3. DIRECTION: A six bit field containing an integer number in tens of degrees. It specifies the screen direction from which the wind is blowing. (Top of display screen is 0 degrees.)
4. $H=$ HEMISPHERE: A one bit field where $H=0$ represents the Northern Hemisphere. $H=1$ represents the Southern Hemisphere.
5. 5Kt: A one bit field indicating the number of five knot flags.
6. 10Kt: A four bit field containing the number of ten knot flags.
7. 50 Kt : A four bit field containing the number of fifty knot flags.

Figure 7-9. Wind Barbs Vectors Block; Mode 4, Submode 7

$$
7-16
$$

FF	LENGTH (I)	
	004	010
M COORDINATE (1)		
N COORDINATE (1)		
CODE		DIRECTION
ARROW LENGTH		VALUE
M COORDINATE (2)		
N COORDINATE (2)		
CODE		DIRECTION
ARROW LENGTH		VALUE

M COORDINATE (n)	
N COORDINATE (n)	
CODE	DIRECTION
ARROW LENGTH	VALUE
CHECKSUM	

Figure 7-10. Vector (Arrow) Plot Block; Mode 4, Submode 10

NOTES: Figure 7-10:

1. M,N COORDINATE: The coordinate where the arrow and/or value is to be centered. M and N are determined by the COORDINATE FLAG in the Product Definition Block.
2. CODE: An integer value defining the type of information to be plotted. The currently defined codes are:

Code
1 --o--> Arrow through point M,N
2 0--> Arrow from point M, N
$3-->0 \quad$ Arrow to point M, N
4 -21--> Arrow with VALUE plotted at M,N
5 220--> Arrow from M,N with VALUE plotted left of M, N
6 -->041 Arrow to M,N with VALUE plotted to right of M,N
7 ----> Vector of length (in pixels)
3. DIRECTION: The arrow direction in tens of degrees, relative to display device screen. (Top of screen is 0 degrees.)
4. ARROW LENGTH: The length of the arrow in pixels for CODEs 1 through 6.
5. VALUE: An integer value to be plotted for CODEs 4, 5 and 6 . If $\operatorname{CODE}=$ 7, the VALUE contains the length of the vector in pixels.

Figure 7-10. (Cont.) Vector (Arrow) Plot Block; Mode 4, Submode 10

$$
7-18
$$

Notes:

1. CENTER M,N COORDINATE: Coordinate of the center point from which the circular arc will be drawn which connects the two end points at the specified coordinates.
2. M,N COORDINATE: logical pairings of these coordinates enable more than one arc to be connected end to end if more than two coordinates (M, N pairs) appear in the block. The minimum entry in the block is one center coordinate and two coordinates following, for the initial arc. For each additional arc which is to be connected to the preceding arc, a center coordinate followed by a single M, N coordinate pair is supplied. The displayed arc will connect the last coordinate with the coordinate just supplied.

Figure 7-11. Center Radius Arc Vectors Block; Mode 4, Submode 11
7-19

Notes: Figure 7-11 (Cont.)
3. C: A single bit flag which indicates whether the arc is to be drawn clockwise or counter-clockwise. If $C=1$, the arc will be drawn clockwise. Otherwise, $C=0$ and the arc is drawn counter-clockwise.
4. $B: A$ single bit blank vector flag. If $B=1$, the arc drawn from the previous coordinate to the coordinate holding $B=1$ is left blank (not visible). If $B=0$, the arc is displayed normally.

Figure 7-11 (Cont.). Center Radius Arc Vectors Block; Mode 4, Submode 11

	$\mathrm{n}-1 \mathrm{M}$ COORDINATE
B	$\mathrm{n}-1 \mathrm{~N}$ COORDINATE
	nth M COORDINATE
B	nth N COORDINATE
	CHECKSUM

Notes:

1. M,N COORDINATE: Coordinate points through which the generated curves must be fitted. A minimum of three coordinate points must appear in the block. If additional coordinates are supplied, continuous curves will be fitted to the points until the nth coordinate is included in the curve.
2. B: A single bit blank vector flag. If $B=1$, the section of the curve drawn from the previous coordinate to the coordinate holding $B=1$ is left blank (not visible). If $B=0$, the curve section between the previous coordinate and the coordinate with $B=0$ is displayed normally.

Figure 7-12. Curve Vectors Block; Mode 4, Submode 12

$$
7-21
$$

CHAPTER 8

ALPHANUMERIC BLOCKS

8.1. Product Definition Block. This block shall be a variable length block including the LENGTH and CHECKSUM when used. The format shall be as shown in Figure 8-1. This block is optional. An example of an application would be to provide additional routing information for alphanumeric messages.
8.2. Data Description Block. This block is not currently used for alphanumeric data.
8.3. Data Blocks. The Alphanumeric data blocks shall be formatted as shown in Figures 8-2 through 8-5. These blocks are defined in the following paragraphs.
8.3.1. Alphanumeric Characters Block. This block shall be formatted as shown in Figure 8-2. This block is used to transmit textual information to be placed on displayed products (e.g., graphics products). Each block shall transmit one complete string of ASCII characters, including control characters. This block will normally be used to transmit nonstandard product labels/legends or variable information to be placed in a standard label/legend.
8.3.2. Plot Data Block. This block shall be formatted as shown in Figure 8-3. This block is used to transmit alphanumeric characters to be displayed at a specific location on a product in a specified format. Each block may be used to transmit labels for one or more lines on the product. It may be used to transmit weather symbols (such as thunderstorm symbols) that are to be displayed at a specified location on the product. The block may transmit any number of symbols as long as they are all to be displayed in the same size and color. The display format to be used is specified by a plot code. The Plot Process Code options are listed in Table C2-2.
8.3.3. Wind Barbs Data Block. This block shall be formatted as shown in Figure 8-4. The block is used to transmit wind direction and speed observations or forecasts to place a wind barb symbol at the specified location on the product. Multiple wind barbs may be transmitted in a single block. Additional blocks may be used, as required, to transmit all wind barbs associated with a product.
8.3.4. Alphanumeric Data Block. This block shall be formatted as shown in Figure 8-5. The data field shall contain an even number of ASCII characters which comprise all or part of the message text. All man-readable messages not intended for
display shall use this block. The block follows the conventions for non-graphic data outlined in Section 2.2.3.2.

FF	LENGTH (I)		
OO5	020		
CHARACTER 1	CHARACTER 2		
CHARACTER 3	CHARACTER 4		
CHARACTER 5	CHARACTER 6		
\begin{tabular}{\|c	c	}	
\hline
\end{tabular} | | | |

NOTES:

1. CHARACTERS: The CHARACTER fields may be used to define additional information concerning the alphanumeric blocks. The block contains an even number of ASCII characters. This block follows the conventions for non-graphic data outlined in Section 2.2.3.2.

Figure 8-1. Alphanumeric Product Definition Block; Mode 5, Submode 20

$$
8-3
$$

FF		
	005	001
M COORDINATE		
N COORDINATE		
DELTA M		DELTA N
B	R CHAR. SIZE	CHARACTER 1
CHARACTER 2		CHARACTER 3
CHARACTER 4		CHARACTER 5
	CHARACTER $\mathrm{n}-1$	CHARACTER n
CHECKSUM		

NOTES: Figure 8.2:

1. M, N COORDINATE: The M and N coordinate element identifies the starting position of the textual string. It references the lower left corner of the first character in the string. M and N are determined by the COORDINATE FLAG in the Product Definition Block.
2. DELTA M, N: The DELTA M and DELTA N identify the start point of the first character in the string at some desired distance from the M and N coordinate element. The distance remains fixed despite whatever zoom value is used.
3. $B=$ Block Mode: The Block Mode is the indicator for the blanking area covered by a character. If $B=1$, a rectangular display area is cleared beneath the standard generated character. If $B=0$, the character is displayed normally unless $R=1$.
4. $R=$ Reverse Block Mode: The Reverse Block Mode is an indicator for reverse video (negative image). $R=0$ is for normal image. $R=1$ is the same as $B=1$, except the display polarity is reversed.
5. CHAR SIZE: Defines the height/width of a character relative to the font size. Zero indicates standard font size of the display device. If the element is non-zero, it represents a multiplicative factor applied to the standard character size, e.g., $0=5 \times 7,1=10 \times 14,2=15 \times 21$, etc.

Figure 8-2. Alphanumeric Characters Block; Mode 5, Submode 1

$$
8-4
$$

FF	LENGTH (I)	
005		002
B	R CHAR SIZE	PLOT PROCESS CODE
M COORDINATE (1)		
N COORDINATE (1)		
CHARACTER 1		CHARACTER 2
CHARACTER 3		CHARACTER 4
-		
CHARACTER n -1		CHARACTER n
M COORDINATE (m)		
N COORDINATE (m)		
CHARACTER 1		CHARACTER 2
CHARACTER n -1		CHARACTER n
CHECKSUM		

Figure 8-3. Plot Data Block; Mode 5, Submode 2

$$
8-5
$$

NOTES: Figure 8.3:

1. $B=$ Block Mode: The Block Mode is the indicator for the blanking area covered by a character. If $B=1$, a rectangular display area is cleared beneath the standard generated character. If $B=0$, the character is displayed normally unless $R=1$.
2. $R=$ Reverse Block Mode: The Reverse Block Mode is an indicator for reverse video (negative image). $R=0$ is for normal image. $R=1$ is the same as $B=1$, except the display polarity is reversed.
3. CHAR SIZE: Defines the height/width of a character relative to the font size. Zero indicates standard font size of the display device. If the element is nonzero, it represents a multiplicative factor applied to the standard character size, e.g., $0=5 \times 7,1=10 \times 14,2=15 \times 21$, etc.
4. PLOT PROCESS CODE: This octal code specifies the processing required to interpret and display the characters 1 through n contained in the block The PLOT PROCESS CODES are found in Table C2-2.
5. M, N COORDINATE: Specifies the geographical point about which the data is to be plotted. M and N are determined by the coordinate flag in the Product Definition Block.
6. Characters 1 through $N:$ The ASCII character string representing the alphanumeric characters or weather symbols as defined by the Plot Process Code.

Figure 8-3. Plot Data Block; Mode 5, Submode 2

FF	LENGTH (I)	
005		003
SHAFT LENGTH		BLANKING FLAG
M COORDINATE (1)		
N COORDINATE (1)		
DIRECTION (1)		
SPEED (1)		
GUST (1)		HEMISPHERE (1)
M COORDINATE (n)		
N COORDINATE (n)		
DIRECTION (n)		
SPEED (n)		
	GUST (n)	HEMISPHERE (n)
CHECKSUM		

Figure 8-4. Wind Barbs Data Block; Mode 5, Submode 3

$$
8-7
$$

NOTES: Figure 8.4:

1. SHAFT LENGTH: The number of pixels for the shaft line (from base to first barb).
2. BLANKING FLAG: An indicator for blanking the area covered by the wind barb font. If left-most bit is set (i.e., a "1") the area is blanked, if the left-most bit is off (i.e., a "0") blanking is not done.
3. M,N COORDINATES: Defines the location of the base of the wind barb shaft. M and N are determined by the COORDINATE FLAG in the Product Definition Block.
4. DIRECTION: An integer number in whole degrees. It specifies the direction from which the wind is blowing.
5. SPEED: An integer number in whole knots.
6. GUST: An integer number in whole knots.
7. HEMISPHERE: An indicator for Northern or Southern Hemisphere. If the right-most bit is set (1), the wind flags go to the left of the shaft (Southern Hemisphere) as viewed from the head of the shaft. If not set (0), the flags go to the right of the shaft (Northern Hemisphere).

Figure 8-4. Wind Barbs Data Block; Mode 5, Submode 3

$$
8-8
$$

FF	LENGTH (I)			
005		004		
CHARACTER 1			CHARACTER	
CHARACTER 3			CHARACTER	4
CHARACTER n -1		B	ETB, ETX or N	NULL
CHECKSUM				

NOTES:

1. CHARACTERS: The data field is an even number of ASCII characters (both alphanumeric and control characters).
2. B: The use of this field is optional. It is only used with the ETB/ETX option. See Section 2.2.3.2.B. If B (high order bit) $=1$, this byte contains the last character of the data set.
3. ETB, ETX, or Null: If the "Null Termination" option (see Section 2.2.3.2.B) is used, then Null will appear as the only valid termination character for the alphanumeric string. If the ETB/ETX option is used, then the following conventions will apply. The last byte in the block contains the ASCII control character ETB if the block is not the final block in the product data set. The last byte is ASCII control character ETX if the block is the last block in the Product Data Set. See Section 2.2.3.2.

Figure 8-5. Alphanumeric Data Block; Mode 5, Submode 4

RASTER SCAN BLOCKS

9.1. Product Definition Blocks.

9.1.1. Satellite Product Definition Block. This block shall be formatted as shown in Figure 9-1. This block may be used to define all raster scan products that are in the form of visual imagery, i.e., satellite data as opposed to facsimile products.
9.1.2. Pixel Product Definition Block. This block shall be formatted as shown in Figure 9-2. This block shall be used for all non-satellite raster scan products (such as radar or facsimile). This block may also be used for satellite products in addition to, with, or instead of the Satellite Product Definition Block. The data may be packed to conserve transmission time. The algorithm used to pack the data shall be indicated by the pack code.
9.2. Data Description Block. No data description blocks are currently used for raster scan products.
9.3. Data Block. This Raster Scan Data block shall be formatted as shown in Figure 9-3. All raster scan products shall use this format with the XROW, YCOL, and RESOLUTION fields set to one (all bits on) if not used. The origin is 0,0. Pixel data in the data field shall be packed as specified by the pack code and arranged as specified by the pack code in the Product Definition block. The currently defined packing algorithms are described in succeeding sections.

9.3.1. Block Organization.

9.3.1.1. AFGWC Packing Scheme. Each data block shall contain a field giving the row and column location of the first pixel in the block and the resolution of the data, followed by a data field containing the pixel data. Succeeding pixels for the remainder of the scan line proceed as specified by the scan code. For multi-bit deep raster scan products, the pixel data shall consist of a pixel value for each pixel location. For single bit deep raster scan products, the pixel data shall specify state (on or off). The pixel data shall be organized in the data field as a continuous string of bits. The number of bits per pixel shall be specified by the matrix code, i.e., matrix code 01, 11, 21,41 indicate one bit pixels, $04,14,24,44$, represent four bit pixels, etc.
9.3.1.2. National Weather Service Packing Scheme. Products packed in accordance with this scheme shall have the XROW, YCOL, and the resolution elements zero (0) filled. The data field shall be organized such that the pixel data is given in 8-bit bytes and packed within the bytes as follows:

Bit 7
and These bits are never used.
Bit 6
Bit 5
and
Bit 4

Bit 3 These bits contain the pixel count, unpacked pixel data, or the control character's lower half. For pixel count, the bits give the number of pixels OFF or ON in groups of four pixels, as indicated by bits 2 and 3. For unpacked pixel data, they thru

Bit 0
These two bits determine the type of data described in the byte as follows:

$00=$	Number of consecutive pixels in the line
	in the oN (white) state.
$01=$	Number of consecutive pixels in the oFF
	(black) state.
$10=$	Unpacked pixel data.
$11=$	Recorder control character.

$11=$ Recorder control character. give the state (ON and OFF) of the next four pixels in the scan line. If the byte contains the end-of-scan (EOS) control character, bits 4 through 7 are off. If the byte contains the end-of-map (EOM) character, bits 4 and 5 are off and bits 6 and 7 are on.

One byte of the packed pixel data stream can represent, at most, sixty (4*15) pixels of all white or all black data (i.e., UU001111 or UU011111). If bits two and three are the same in two, and at most three, consecutive bytes (e.g., two or three bytes containing UUOO, or two or three bytes containing UUO1), then the pixel count in the second byte represents multiples of sixteen, and the third, if present, represents multiples of sixteen squared. For example:

```
UU001010 UU000101 UU000001 = 10 + (5 * 16) + (1 * 256)
    = 346 groups = 1384 white pixels (346*4)
```

UU000111 UU010011 UU011100 UU110000 $=7$ groups of white, $3+(12 * 16)$ groups of black, and end of scan $=28$ white pixels, 1780 black pixels and end of scan

Each block will contain one or more scan lines of the product (or partial lines) as required to fill the data block. Each complete scan line will be followed by an end-of-scan (EOS) sequence (UU110000). If a scan line is not completed before the last byte of a data block, the scan information will continue in the next block and the data shall be treated as if it had been in the same block. If an EOS is encountered before the end of a scan line, then the remainder of the scan line is white, and the next byte begins the next scan line. The final EOS for the product will be followed by an end-of-map (EOM) sequence (UU110011). If the EOM sequence is reached before the end of a data block, the remainder of the block will be filled with EOM sequences and the next block will be the End of Product block.

9.3.2. Block Length.

9.3.2.1. Air Force Global Weather Central (AFGWC) Packing Scheme. Data blocks will be of fixed length for a given product as determined by the number of pixels required to define one complete scan line of the product. Data block length shall be variable from one product to another depending on the size of the product. For example, one product may be a 512 x 512 bit array and another may be a $1024 \times 1024 \times 6$ array.
9.3.2.2 National Weather Service Packing Scheme. Data blocks will be of fixed length for a given product. For example, NWS pixel products are blocked into 960 byte strings. Each block may contain any number of complete or partial scan lines as required to fill the block. Data block length will be variable from one product to another.

FF	LENGTH (I)	
	006	020
	PI SET	GI SET
SATELLITE ID		
LONGITUDE X		
	RESOLUTION CODE	DATA TYPE
X MAX		
Y MAX		
ENHANCE MAX		ENHANCE MIN
ENHANCE ID		LENGTH (MM)
X CENTER		Y CENTER
LATITUDE		
LONGITUDE		
NCHAR		CHARACTER 1
CHARACTER 2		CHARACTER 3
CHARACTER 4		CHARACTER 5
CHARACTER n-1		CHARACTER n
CHECKSUM		

Figure 9-1. Satellite Product Definition Block; Mode 6, Submode 20

NOTES: Figure 9-1:

1. PI SET: The PI SET defines the background projection on which the product is valid. The currently defined codes are shown in Table C2-1. If a product is not associated with a background, PI SET will be zero (0) filled.
2. GI SET: The Grid Indicator defines the grid on which the data is valid. Currently defined codes are shown in Table C2-3. If a product is not associated with a GI SET, this field will be zero (0) filled.
3. SATELLITE IDENTIFICATION: Two ASCII characters that identify the satellite from which the product was produced. The first character identifies the agency. Currently assigned values are:

A - Air Force
E-European
I - Indian
J - Japan
N - NOAA
R - Russian
S - NASA
V - Navy
The second byte may contain a letter or number to designate a specific satellite.
4. LONGITUDE X : This is the longitude of the meridian perpendicular to the base of the product and extending from the base of the product to the pole. Longitude X may be outside of the product boundaries. Table C2-1 shows the Longitude X for the defined PI Sets (map projection).
5. RESOLUTION CODE: This element specifies the resolution of the satellite data in the product in tenths of nautical miles, i.e., the resolution must be multiplied by .1 to obtain the actual value.
6. DATA TYPE: An integer code that specifies the type of satellite data contained in the product. The currently defined codes are:
$0=$ Visual (VIS) only
1 = Infrared (IR) only
2 = Alternating lines of IR/VIS both day or both night
3 = Alternating bytes IR/VIS both day or both night
4 = Alternating lines of night and day both IR or both VIS
5 = Alternating bytes of night and day both IR or both VIS
7. XMAX and YMAX: The maximum horizontal (XMAX) and vertical (YMAX) size of the product in pixels.

```
Figure 9-1. Satellite Product Definition Block; Mode 6, Submode 20
```

NOTES: Figure 9-1 (Cont.):
8. ENHANCE MAX and MIN: The limits of the gray scale referenced by ENHANCE ID.
9. ENHANCE ID: An enhancement identification which points to a table of gray scales or an algorithm. Some values are common for interagency use and some are user defined.
10. LENGTH: Length of each scan line in the product in tens of minutes of arc, i.e., length must be multiplied by ten to obtain the actual value.
11. X, Y CENTER: The coordinates of the center of the product in units of the grid from which the product was extracted.
12. LATITUDE and LONGITUDE: The latitude and longitude of the center of the product in hundredths of degree, i.e., latitude and longitude must be multiplied by .01 to obtain the actual value.
13. NCHAR: The number of characters contained in the product title that follows.
14. CHARACTERs 1-n: The ASCII characters that make up the product title.

Figure 9-1. Satellite Product Definition Block; Mode 6, Submode 20

FF	LENGTH (I)	
006	030	
PI SET	MATRIX CODE	
SCAN CODE		PACK CODE
CHECKSUM		

NOTES: Figure 9.2:

1. PI SET: The PI SET defines the background projection on which the product is valid. The currently defined codes are shown in Table C2-1. If a product is not associated with a background, PI SET will be zero (0) filled.
2. MATRIX CODE: A code defining the dimensions of the pixel array being sent in the product. Currently defined codes are:

01-512 $\times 512 \times 1$	11-1024 $\times 1024 \times 1$
02-512 $\times 512 \times 2$	12-1024 $\times 1024 \times 2$
03-512 $\times 512 \times 3$	13-1024 x 1024×3
04-512 $\times 512 \times 4$	14-1024 $\times 1024 \times 4$
05-512 $\times 512 \times 5$	$15-1024 \times 1024 \times 5$
06-512 $\times 512 \times 6$	16-1024 $\times 1024 \times 6$
07-512 $\times 512 \times 7$	17-1024 $\times 1024 \times 7$
$10-512 \times 512 \times 8$	20-1024×1024×8
21-2048 $\times 2048 \times 1$	41-4096 x 4096×1
22-2048× 2048×2	42-4096 x 4096x2
23-2048 x 2048×3	43-4096 x 4096×3
24-2048×2048×4	44-4096 x 4096×4
25-2048×2048×5	45-4096 x 4096×5
26-2048 x 2048×6	46-4096 x 4096×6
27-2048× 2048×7	47-4096 x 4096×7
30-2048 x 2048×8	50-4096 x 4096×8

63-1728×nx1 where n is dependent on the size of the product. In this case the number of data blocks must be counted during processing to determine n.
$0-M \times N \times 1$ where M and N are dependent on the size of the product. In this case, M will be specified by the resolution element in the data block and the number of data blocks must be counted during processing to determine N.

Figure 9-2. Pixel Product Definition Block; Mode 6, Submode 30

NOTES: Figure 9.2: Pixel Product Definition Block; Mode 6, Submode 30
3. SCAN CODE: Used to indicate the order in which the raster scan pixels are arranged in the data block. The currently used scan codes are:

1 - Data are arranged in the data block such that pixels are defined row by row (raster scan) from the upper left corner.

2 - Data are arranged in the data block such that the pixels are defined row by row (bottom up raster scan) from the lower left corner.
4. PACK CODE: A code defining the algorithm which was used to pack the product. Currently defined codes are:

0 - Pixels are unpacked, i.e., each byte contains one pixe7.
1 - Pixels are packed in accordance with the AFGWC packing scheme. See Section 9.3.1.1.

2 - Pixels are packed as specified by the Define Datawidth/Fieldwidth block. See Mode 1, Submode 5.

128 - Pixels are packed in accordance with the National Weather Service See Section 9.3.1.2.

Figure 9-2. Pixel Product Definition Block; Mode 6, Submode 30

$$
9-8
$$

FF	LENGTH (I)		
	006		001
XROW			
YCOL			
RESOLUTION			
PIXEL DATA			
CHECKSUM			

NOTES:

1. XROW and YCOL: The row and column number, within the product, where the first pixel in the data block is located. For example, 0,0 specifies the first pixel is in row 0, column 0 while 36,492 specifies the first pixel is in row 36, column 492. This location is referenced to the scan direction indicated by the scan code, i.e., for top down scan sequence, 0,0 specifies the upper left corner while 36,492 specifies the 36 th row from the top and the 492nd column from the left.
2. RESOLUTION: The number of pixels per scan line.
3. PIXEL DATA: The value, or state, of each pixel in the scan line.

Figure 9-3. Raster Scan Data Block; Mode 6, Submode 1

$$
9-9
$$

GRIDDED DATA BLOCKS

10.1. Product Definition Block. The Gridded Data Product Definition Block shall be formatted as shown in Figure 10-1. Gridded data may be transmitted in packed or unpacked format, and as latitude/ longitude or I/J grid data, as determined by the product originator.
10.2. Data Description Block. The data description block for unpacked Gridded Data products shall be in the format shown for Formatted Binary Data products in Figure 6-2. No data description block is used for packed Gridded Data products. The following conventions shall apply to the Gridded Data data description block when used.
10.2.1. Length and Arrangement of Block. Each element being transmitted in the data block shall be described in the ninth through twentieth bytes and succeeding twelve byte sections. The sections shall be in the same order as the elements appear in the element sets of the data block. The length of the data description block shall be sufficient to describe one or more elements, as required by the originator of the product.
10.3. Data Blocks. Due to the significant differences in formal requirements for packed and unpacked Gridded Data products, different data blocks are used.
10.3.1. Unpacked Gridded Data Block. The unpacked Gridded Data data block(s) for both latitude/longitude Gridded Data products and I/J Gridded Data products shall be formatted as shown for Formatted Binary Data in Figure 6-4. The data field of the block shall be formatted as specified in Section 10.2.1 The data field within the data block shall contain element sets aligned end-to-end as shown in Figure 6-4.
10.3.2. Band Index Data Block. This block applies to packed Gridded Data products. Each data block will be used to transmit all grid points in a product for each parameter (e.g., temperature, pressure). one or more additional data blocks may be transmitted sequentially to define all parameters in the product. Blocks shall be formatted as shown in Figure 10-3.
10.3.2.1. Data Unpacking Method. In order to discuss unpacking the data, the method and terms involved in packing the scaled integer grid value must be defined. One constant is chosen and included for each type of data field. This constant is divided into each grid value during the packing process in order to reduce the number of least significant digits. Use of
this Multiplier Constant (termed MC in the explanation) produces a value called the Band Index (BI). Thus for any given grid point value (GV):

$$
B I=(G V) / M C
$$

A first order difference value is then calculated between consecutive Band Index Values:

$$
\text { Delta } B I_{n}=B I_{n+1}-B I_{n}
$$

Note that BI_{1} and Delta BI_{1} are given in the Gridded Data Product Definition Block. Now second order derivatives are computed from the first order differences:

$$
\text { Delta }{ }^{2} B I=\text { Delta } B I_{n+1}-\text { Delta } B I_{n}
$$

The data part of the data block consists entirely of Delta ${ }^{2}$ BI, Delta ${ }^{2} B I_{p-2}$ for a data field with p data points. During packing, the Deita BI computed between the last element of each row and the first element of the next row is computed using the next element directly above rather than beginning at the left side of the next row. Therefore, the scanning computation proceeds left-to-right for the lst, 3rd,, rows and right-to-left for the 2 nd, 4 th,, rows. Decoding grid point value n, then, is done as:

$$
G V_{n}=\left(B I_{n-1}+\text { Delta } B I_{n-2}+\text { Delta }^{2} B I_{n-2}\right) * M C
$$

10.4. Grid Conventions. The three key agencies capable of producing gridded products in accordance with these formats are National Weather Service, the Air Force, and the Navy. Each uses the same basic grid system but employs different (I, J) indexing conventions. Thus, it is important to know the originator of the gridded product, the specific grid being employed, and its relative indexing convention. This information must be used to properly interpret data related to or defined by COORDINATE FLAG $=1$ (see Figures 7-1, 7-2, and 10-1). The designation of the COORDINATE FLAG determines the units for all coordinate data in data blocks that follow it. The originator of the product can be determined from the FILE INDICATOR in the Product Identification Block. Specific details concerning gridded products and indexing conventions should be obtained from the agency originating the product.

FF LENGTH (I)			
	007	020	
	PI SET	GI SET	
SCALE FACTOR			
	COORDINATE FLAG	UNITS CODE	
	SCALE EXPONENT	MULTIPLIER CONST.	
FIRST BAND INDEX VALUE			
FIRST DELTA BI IN FIELD			
NUMBER OF COLUMNS			
NUMBER OF ROWS			
* REFERENCE M COORDINATE/M MAXIMUM			* indicates
$*$ REFERENCE N COORDINATE/N MAXIMUM redefined when COORDINATE FLAG $=2$			
* J START			Product Valid Time End of Product Valid Time
	MONTH	DAY	
	HOUR	MINUTE	
	MONTH	DAY	
	HOUR	MINUTE	
I POLE			
J POLE			
RE/D			
LONGITUDE X			
	REF. CODE/GML	SCAN CODE	
CHECKSUM			

Figure 10-1. Gridded Data Product Definition Block; Mode 7, Submode 20

NOTES: Figure 10.1:

1. PI SET: The PI SET defines the background projection on which the product is valid. The currently defined codes are shown in Table C2-1 (Appendix C). If a product is not associated with a background, PI SET will be zero (0) filled.
2. GI SET: The Grid Indicator defines the grid on which the data is valid. Currently defined codes are shown in Table C2-3. If a product is not associated with a GI SET, the field will be zero (0) filled.
3. SCALE FACTOR and SCALE FACTOR FRACTION: The real world map scale in millions. The first byte contains the integer part, the second byte contains the fraction.
4. COORDINATE FLAG: Coordinate System Indicator as follows:

Flag	$\underline{M=}$	$\underline{N=}$	Latitude Longitude 0
1	I	(An earth surface grid in latitude and longitude coordinates.)	
2	X	Y	(Cartesian coordinates of the earth's surface.)
		(Pixel coordinates of the product background projection.)	

5. UNITS CODE: A code specifying the units of the data elements. The list of units codes is found in Table C2-4 (Appendix C).
6. SCALE EXPONENT: The number of binary digits scaling which the unpacked integer carries. For example, the Fortran statement GV $=$ FLOAT(IGRID(J)/2**SE will convert an unpacked grid value from $\operatorname{IGRID}(J)$ into the real parameter value GV.
7. MULTIPLIER CONSTANT (MC): The value that each grid value has been divided by to reduce the number of least significant digits. For Example, if $S E=$ Scale Exponent, and MC = Multiplier Constant, the FORTRAN statement GV = FLOAT (IGRID(J)/2**SE)*MC will convert an unpacked grid value from IGRID(J) into the real parameter GV.
8. FIRST BAND INDEX VALUE (BI): This is the Band Index Value at the first grid point. $B I(1)=\operatorname{FIX}(G V(1) / F L O A T(M C)) / 2 * * S E$. In other words, the value of the first grid point is modified by the Multiplier Constant and Scale Exponent to reduce the number of bits required to store the number in integer format.

Figure 10-1. (Cont.) Gridded Data Product Definition Block; Mode 7, Submode 20

NOTES: Figure 10.1 (Cont.):
9. FIRST DELTA BI IN FIELD (DI): The difference between the first two BI's.

Delta $B I(1)=B I(2)-B I(1)$.
The variables BI, MC and SE are described in Notes 6, 7, and 8. The theory is described in Section 10.3.2.1. When unpacking the grid, the value (GV) of the first grid point is given by the FORTRAN statement:

$$
G V(1)=F L O A T(B I / 2 * * S E) * M C
$$

and the first DELTA BI value is given by the FORTRAN statement:
$D B I(1)=\operatorname{FLOAT}\left(D 1 / 2^{* * S E}\right) * M C$.
The second grid point is
$G V(2)=G V(1)+D B I(1)$.
The second DELTA BI value is $D B I(2)=D B I(1)+F L O A T(D 2 B I(1) / 2 * * S E) * M C$.
The third grid point is $G V(3)=\operatorname{GV}(2)+D B I(2)$.
From then on

$$
\begin{aligned}
& D B I(n-1)=D B I(n-2)+F L O A T(D 2 B I(n-2) / 2 * * S E) * M C \text { and } \\
& G V(n)=G V(n-1)+D B I(n-1)
\end{aligned}
$$

where DBI is the computed DELTA BI value and D2BI is the DELTA squared BI value from Mode 7, Submode 1.
10. NUMBER OF COLUMNS: The number of horizontal grids in the grid data area.
11. NUMBER OF ROWS: The number of vertical grids in the grid data area.
12. REFERENCE M and N COORDINATE/M and N MAXIMUM: For COORDINATE FLAG $=0$ or 1, these reference coordinates shall specify the first grid point for which data is transmitted and may represent any point in the grid system, usually one of the four corners. M and N are determined by the REFERENCE CODE. For COORDINATE FLAG $=2$, these reference coordinates specify the M and N maximum pixel values respectively of the graphic background area within which the data grid is to be superimposed. See Figure 10-2.
13. ISTART, JSTART: For COORDINATE FLAG $=0$ or 1 , these values designate the starting grid coordinate of the first grid point in the first row. If COORDINATE FLAG $=2$, ISTART will be the number of pixels from the left edge of the displayable graphic area to the left-most column of the gridded data field. JSTART will be the number of pixels from the bottom edge of the graphic area to the lower-most row of the gridded field. See Figure 10-2. The grid points proceed row-wise left-to-right NCOLS, then to the next row above and proceed right-to-left and so on up to NROWS.
14. Product/End of Product Valid Time. The Product Valid Time is the time for which the transmitted data is valid or the start time of the valid period. If the 'DAY' element of the End of Product Valid Time is zero (0), the product is valid only at the Product Valid Time. For observed data, the valid time approximates, or may be identical to, the product generation time.

Figure 10-1. (Cont.) Gridded Data Product Definition Block; Mode 7, Submode 20

NOTES: Figure 10.1 (Cont.):
15. IPOLE/JPOLE: For Polar Stereographic projections, the IPOLE/JPOLE fields define the horizontal and vertical grid distances respectively, from the pole to the lower left.corner of the product. For Mercator projections, the IPOLE defines the East-West grid system distance from the Greenwich meridian to the meridian that passes through the lower left corner of the product, and JPOLE defines the North-South grid system from the equator to the bottom of the product. For both Polar Stereographic and Mercator projections, the IPOLE/JPOLE grid distances are the number of grid mesh intervals for the product's mesh indicated by the GI Set code.
16. RE/D: For gridded products on polar stereographic background projections, this specifies the effective number of grid lengths from the pole to the equator on the plane of the projection. It is derived by dividing the distance from the pole to the equator by the length. The grid length depends on the product's grid mesh, indicated by the GI Set code. For gridded products on Mercator background projections, RE/D will be set to zero. The actual entry is scaled by 2**6.
17. LONGITUDE X : This is the longitude of the meridian perpendicular to the base of the product and extending from the base of the product to the pole. Longitude X may be outside of the product boundaries. Table C2-1 shows the Longitude X for the defined PI Sets (map projection).
18. REFERENCE CODE: If COORDINATE FLAG $=0$ or 1 , this code indicates where, in the grid, the reference coordinates are located. The currently used reference codes are:

1 - Reference coordinates are located in the upper left corner of the grid.
2 - Reference coordinates are located in the lower left corner of the grid.
If COORDINATE FLAG $=2$, this single byte field will specify the GRID MESH LENGTH (GML) of the grid field. GML is defined to be the number of pixels between adjacent grid points along all columns and rows. All pixel distances reference the displayable graphic area.
19. SCAN CODE: This code is used to indicate the order in which the data for the grid points appear in the data block. The currently used scan codes are:

1 - Data are arranged in the data block such that the grid is defined row by row (raster scan) from the upper left corner.

2 - Data are arranged in the data block such that the grid is defined row by row (bottom up raster scan) from the lower left corner.

Figure 10-1. (Cont.) Gridded Data Product Definition Block; Mode 7, Submode 20

Notes:

M Maximum and N Maximum, as used here, are encoded in the Gridded Data Product Definition Block as the Reference M and N coordinate, respectively. These values represent the width and height, respectively, of the entire graphic display area in pixels. Two parameters may link the pixel resolution (size) with actual distance on the earth's surface. The first is PI SET, which may define the Displayable Graphic Area (M Maximum by N Maximum) as being a precise geographical background. The second link is the SCALE FACTOR, which defines the Displayable Graphic Area in terms of an actual map scale. Note that when COORDINATE FLAG is 2, the ISTART, JSTART, REFERENCE M, REFERENCE N, and REFERENCE CODE (GML) are all given in terms of pixel values.

Figure 10-2. Gridded Data Definition Block Parameters when COORDINATE FLAG $=2$

NOTES:

1. DELTA ${ }^{2}$ BI VALUES: These values are the second derivative of the Band Index Values. The field width is set by the Define Datawidth/Fieldwidth Block (Mode 1, Submode 5). The default is 8 bits (one byte).

Figure 10-3. Band Index Data Block; Mode 7, Submode 1

APPENDIX A

TERMS, DEFINITIONS AND STANDARD VALUES

```
SECTION 1 - GLOSSARY
SECTION 2 - MNEMONICS
```

$\left.\begin{array}{ll}\text { Accuracy } & \begin{array}{l}\text { The degree of conformity of a measured or } \\ \text { calculated value to some recognized standard or } \\ \text { specified value. }\end{array} \\ \text { Analysis } & \begin{array}{l}\text { The process of interpreting and collating } \\ \text { independent data to obtain a comprehensive } \\ \text { definition of the state of the environment. }\end{array} \\ \text { Block } & \\ & \text { A string of records, a string of words, or a } \\ \text { character string, formed for technical or logic } \\ \text { reasons to be treated as an entity. }\end{array}\right\}$

Encode	To convert data by the use of a code or a code character set in such a manner that reconversion to the original form is possible.
Field	A bounded collection of data. This term will normally be used with a descriptive adjective that defines the nature of the field, e.g., Gridded Data Field, product identification field, etc.
File Time	The date and time (zulu) a message is made available for transmission purposes.
Flag	A bit, combination of bits, or a character, used to indicate a class of information, a step in a program, or some classification of a value (commonly used for branching).
Forecast	A prediction of the future state of the environment.
Grid	A system of uniformly spaced points referenced to the physical surface of the earth. A grid may be in the form of uniformly spaced latitude and longitude points with the spacing expressed in degrees or in the form of an array of points with rows designated by an integer (I), columns designated by an integer (J), and spacing expressed in nautical miles, kilometers, or some other appropriate linear distance. The latter form of grid is usually referred to as an I/J grid.
I/J Grid	I/J Grid is an array of points in a mapped representation of the earth surface and spaced at a uniform interval in the map. The points are referenced by an integer row number (I) and column number (J). There is a unique algorithm for reference to latitude/longitude from I/J depending on the map transformation formula (i.e., polar stereographic, mercator, Lambert conformal, etc.) and there is an algorithm for determining the true earth distance between grid points (which will in general vary over the map).
Image	The visual depiction of information (e.g., a satellite picture or a vector graphic product displayed on a CRT).
Level	A surface above the surface of the earth defined by the locus of points of equal atmospheric pressure. It is used in connection with upper air data which is reported at altitudes dependent on

A1-2
the atmospheric pressure. A level is therefore a surface on which the pressure is everywhere the same.

Location Identifier

Model

Observation

Octet
Precision

Product

Record

Rounding

Set

A number, or string, of A / N characters that identifies a geographic location (a shorthand notation for name of the location). Location identifiers are assigned by several different organizations (WMO, ICAO, etc.).

An automated set of analysis or forecast algorithms that simulates the dynamics of the environment.

A collection of information describing weather conditions at a specified location within a specified area.

Eight contiguous bits (byte).
A measure of the ability to distinguish between nearly equal values. The degree of mutual agreement between individual measurements, namely repeatability and reproducibility.

A collection of information (element sets) that completely defines a bounded group of related information.

A collection of related data or words treated as a unit, e.g., a synoptic observation.

When a figure is to be rounded to fewer digits than the total number available, the procedure should be as follows:
a. When the first digit discarded is less than five, the last digit retained should not be changed.
b. When the first digit discarded is five or greater, the last figure retained should be increased by one unit.

A finite or infinite number of objects of any kind, or entities, (of components) or concepts, that have a given property or properties in common.

APPENDIX A - SECTION 2

MNEMONICS

Table A2-1 Symbol, Element, and Line Mnemonics

Use Code:

1 = Formatted binary or satellite element mnemonic (appearing in Mode $3 /$ Submode 21 or 30).

2 = Formatted binary data block symbol mnemonic (appearing in Mode 3/ Submode 1).

3 = Vector graphic line mnemonic (appearing in Mode 1/Submode 4).
4 = Vector graphic symbol mnemonic (appearing in Mode 5/Submode 2).
5 = Gridded element mnemonic (appearing in Mode 3/Submode 21).
6 = Formatted binary element mnemonic (appearing in Mode 3/Submode 22).

Mnemonic	Use	Description
A	2,4	Hail
$A B A$	6	Antenna Beam Azimuth
ABE	6	Antenna Beam Elevation
$A B N$	6	Antenna Beam Notation
$A C$	2,4	Altocumulus
ACC	4	Anticyclonic Circulation Center
ACC	2,4	Altocumulus Castellanus (USAF only)
ACS	2/4	Altocumulus Standing Lenticular
ACZ	3	Anticyclonic Wind Shear Zone
AGE	1,5	Snow Age
AH1-AH6	3	Arrowhead Style (6 styles)
ALB	1	Surface albedo
ALT	1,5	Altimeter Setting
AMI	6	Acquisition Mode Identification
AMX	1,5	Amount of Obscuration
ANC	4	Anticyclonic Circulation Center (USAF only)
AOA	3	Axis of Advection
AS	2,4	Altostratus
$A \cup X$	3	Auxiliary Upper Level Contour
AW	2,4	Hail Shower
AZR	1,5	Hail Diameter
BC	1	Barometric Characteristic
BCO-BC8	2,4	Barometric Characteristic Trace Code
$B D$	2,4	Blowing Dust/Sand
$B D P$	5	Boundary Layer Dewpoint Depression

BDS	2,4	Dust Storm/Sand Storm	
$B K N$	2,4	Broken (Sky Condition)	(
$B L K$	1	WMO Block Number	
BPOS	1	Beam position	
$B S$	2,4	Blowing Snow	
BSH	2,4	Blowing Snow-High	
$B S I Z$	1	Box and mini-box sizes for Sounding data	
$B S L$	2,4	Blowing Snow-Low	
B11	3	Ceiling less than 1,000 ft and/or Visibility less than 1 mile (area outline)	
CAL	1	ICAO Call Letters	
CAM	2,4	Cloud Amount Missing	
CAT	3	Clear Air Turbulence Outline	
CAO-CA9	2,4	Cloud Amount	
$C B$	2,4	Cumulonimbus	
CB3	2,4	Cumulonimbus without Anvil	
CB9	2,4	Cumulonimbus with Anvil	
CC	2,4	Cirrocumulus	
CCT	3,5	Climatological Temperature	
CCW	?	Climatological Wind	
CDB	1,3,5	Cloud Base	
CDP	4	Cold Pool	
CDT	1,3,5	Cloud Top	
CFA	3	Cold Front-Aloft	
CFG	3	Cold Frontogenesis	
CFS	3	Cold Front-Surface)
CFX	3	Cold Frontolysis	\cdots
CHA	1,5	High Cloud Amount	
CHH	1,5	High Cloud Height	
CHT	1	High Cloud Type	
CI	2,4	Cirrus	
CIG	1,3,5	Ceiling Height	
CLA	1,5	Low Cloud Amount	
CLH	1,5	Low Cloud Height	
CLQ	6	Integrated Cloud Liquid	
CLR	2,4	clear (Sky Condition)	
CLT	1	Low Cloud Type	
CMA	1,5	Middle Cloud Amount	
CMH	1,5	Middle Cloud Height	
CMT	1	Middle Cloud Height	
CS	2,4	Cirrostratus	
CT	1	Cloud Type	
CTA	1,5	Total Cloud Amount (USAF only)	
CTR	1	Counter	
CU	2,4	Cumulus	
CVA	3	Thunderstorm or Convective Area Outline	
CVG	3	Convergence Area Outline	
CYC	4	Cyclonic Circulation Center	
C1A	1,5	First Cloud Layer Amount	
C1B	1,5	Contrail Base 1	
C1C	1,5	Contrail Top 1)

\bigcirc	CIH	1,5	First Cloud Layer Height
\bigcirc	C1T	1	First Cloud Layer Type
	-C2A	1,5	Second Cloud Layer Amount
	C2B	1,5	Contrail Base 2
	C2C	1,5	Contrail Top 2
	C2H	1,5	Second Cloud Layer Height
	C2T	1	Second Cloud Layer Type
	C3A	1,5	Third Cloud Layer Amount
	C3H	1,5	Third Cloud Layer Height
	C3T	1	Third Cloud Layer Type
	C33	3	Ceiling less than $3,000 \mathrm{ft}$ and/or Visibility less than 3 miles (area outline)
	D	2,4	Dust/Sand - Slight
	DAY	1	Day of the Month
	DD	2,4	Dust Devil
	DFG	6	Digitally Filtered Ground clutter removal gates
	DIP	6	Data Integration Period
	DIR	1,5,6	Wind Direction
	DIV	3,5	Divergence
	DL1-DL7	3	Dashed Line (seven colors)
	DPD	1,3,5	Dewpoint Depression
	DPT	1,3,5,6	Dewpoint Temperature
	DRY	3	Dry Line
	DVL	3,5	D-Value
)	D10	3	Ceiling less than 10,000 ft (area outline)
	$E L V$	6	Elevation (msl meters)
	EPT	5	Equivalent Potential Temperature
	F	2,4	Fog/Ice Fog
	FGD	6	Radial distance to center of first radar gate (meters)
	FGH	6	Height (vertical) to center of first gate (meters)
	FLAG	1	Flag
	FNL	2,4	Funnel Cloud
	FPH	2,4	Fog during past hour
	GF	2,4	Ground Fog
	GMH	6	Geometric heights
	GPH	1,3,5,6	Geopotential Height
	GST	1	Wind Gust
	H	2,4	Haze
	HGT	1,3,5	Altitude (Height)
	HI	4	High Pressure/Height Center
	HR	1,6	Hour
	HSS	3	Horizontal Speed Shear
	HTF	3	Height Fall Area Outline
	I	3	Icing
	ICE	3	Ice Cover
\bigcirc	ICG	3	Icing Area Outline

ICL	4	Clear Icing - Light
ICM	4	Clear Icing - Moderate
ICS	4	Clear Icing - Severe
ICT	4	Clear Icing - Trace
ID	1	Identification of DMSP satellite
IDT	6	Instrument Dwell Time
IF	2,4	Ice Fog (USAF only)
IML	4	Mixed Icing - Light
IMM	4	Mixed Icing - Moderate
IMS	4	Mixed Icing - Severe
IMT	4	Mixed Icing - Trace
INS	4	Shear/Instability Line
IP	2,4	Ice Pellets
IPW	2,4	Ice Pellet Shower
IPZ	2,4	Ice Prisms
IRL	4	Rime Icing - Light
IRM	4	Rime Icing - Moderate
IRS	4	Rime Icing - Severe
IRT	4	Rime Icing - Trace
JLH	1	Julian Hour
K	2,4	Smoke
L	2,4	Drizzle/Moderate Drizzle
L+	2,4	Heavy Drizzle
L -	2,4	Light Drizzle
LAT	1,6	Latitude
LES	3	Less than 2/8 Cloud Cover (area outline)
LO	4	Low Pressure/Height Center
LON	1,6	Longitude
LPH	2,4	Drizzle during past hour
LTG	2,4	Lightning
LIA-L4A	1	Cloud Amount Layer 1-4 (4 layers) (USAF only)
L1H-1	1	Cloud Height Layer 1-4 (4 layers) (USAF only)
LIT-L4T	1	Cloud Type Layer 1-4 (4 layers) (USAF on7y)
MDV	3,5	Medium Range D-Value
MN	1,6	Minute
MNS	4	Minus Sign
MO	6	
MON	1	Month
MW1-MW3	1	Maximum Wind Level 1-3 (3 levels)
NRG	6	Number of Range Gates
NS	2,4	Nimbostratus
NSA	6	Number of Spectral Averages
NUL	6	Null, or fields to be ignored
OBS	2,4	Obscured (Sky Condition)
OFA	3	Occluded Front-Aloft
OFS	3	Occluded Front-Surface

OFX	3	Occluded Frontolysis
OPF	6	Center operating frequency
OVC	2,4	Overcast (Sky Condition)
OVV	3,5	Omega/Vertical Velocity
OZ	1	Ozone
PC3	1	Pressure Characteristic - 3 hr
PKG	1	Peak Gust
PLS	4	Plus Sign
PNN	6	Processing Node Name
PP	1,3	Barometric tendency (3-hour pressure change)
PPP	1,3	Sea Level Pressure
PPW	1,5,6	Precipitable Water
PRP	6	Pulse Repetition Period
PRS	1,5,6	Pressure
PRST	1	Tropopause Pressure
PVA	3	Positive Vorticity Advection Line
PWB	2,4	Past Weather - Blowing Dust or Snow
PWF	2,4	Past Weather - Fog
PWL	2,4	Past Weather - Drizzle
PWR	2,4	Past Weather - Rain
PWS	2,4	Past Weather - Snow
PWT	2,4	Past Weather - Thunderstorm
PWW	2,4	Past Weather - Showers
PWX	1	Past Weather
QPF	3,5	Quantitative Precipitation Forecast
QQ1-QQ9	4,6	Special Symbol 1-9 (defined by originator of product)
R	2,4	Rain/Moderate Rain
R+	2,4	Heavy Rain
R -	2,4	Light Rain
RAM	6	Radar Acquisition Mode
RDG	3	Ridge Axis
REV \#	1	Orbit number
RMV	6	Radar Mean Velocity
RNL	6	Radar Noise Level estimate
RPH	2,4	Rain During Past Hour
RPW	6	Radar Pulse Width
RS	2,4	Rain and Snow Mixed
RSD	6	Radar Spectral Data values
RSI	6	Radar Sampling Interval
RSN	6	Radar Site Name
RSP	6	Radar Signal Power
RSW	2,4	Showers of Rain and Snow Mixed
RVV	6	Radar velocity variance
RW	2,4	Rain Showers
R06	1,3,5	6-Hour Precipitation Amount
R24	1,3,5	24-Hour Precipitation Amount
S	2,4	Snow/Moderate Snow

St	2,4	Heavy Snow	\bigcirc
S -	2,4	Light Snow	\bigcirc
SC	2,4	Stratocumulus	
SCID	1	Satellite ID	
SCT	2,4	Scattered (Sky Condition)	
SD	1	Ship Direction (USAF On7y)	
SDD	1	Ship Direction	
SDP	4	Subtropical Depression	
SDO-SD8	2,4	Ship Direction 0-8 (9 values: becalmed \& 8 points of compass clockwise from NE)	
SEC	1	Second	
SFA	3	Stationary Front - Aloft	
SFG	3	Stationary Frontogenesis	
SFS	3	Stationary Front - Surface	
SFX	3	Stationary Frontolysis	
SG	2,4	Snow Grains (USAF on7y)	
SGR	2,4	Snow Grains	
SKY	1,5	Sky Cover (Total Cloud Amount)	
SL1-SL7	3	Solid Line 1-7 (7 colors)	
SNO	3,5	Snow Depth	
SNR	6	Signal-to-noise ratios	
SOA	3	Stationary Occluded Front - Aloft	
SOS	3	Stationary Occluded Front - Surface	
SOX	3	Stationary Occluded Frontolysis	
SPD	1,3,5,6	Wind Speed	
SPH	2,4	Snow During Past Hour	
SPL	6	Minimum signal power used in scaling)
SPW	6	Maximum signal power used in scaling	
SQL	2,4	Squalls	
SRN	6	Software Revision Number	
SRP	6	Standard Reporting Period	
SSN	4	Subtropical Storm - Northern Hemisphere	
SSS	1,3,5	Sea Surface Temperature	
ST	2,4	Stratus	
STF	3,5	Stream Function Value	
STM	3,5	Streamline	
STN	1	WMO Station Number	
SV	1	Ship Speed (USAF only)	
SVH	6	Maximum spectral value over all spectra	
SVL	6	Minimum spectral value over all spectra	
SVV	1	Ship Speed	
SW	2,4	Snow Showers	
SWT	1,3,5	SWEAT Index	
506	1,3,5	6-Hour Snowfall Amount	
T	2,4	Thunderstorm	
TA	2,4	Thunderstorm with Hail	
TBB	6	Brightness temperatures	
TBL	4	Turbulence - Light	
TBM	4	Turbulence - Moderate	
TBS	4	Turbulence - Severe	
TCN	4	Tropical Cyclone - Northern Hemisphere	

\bigcirc	TCS		Tropical Cyclone - Southern Hemisphere
\bigcirc	TCU	2,4	Towering Cumulus
	TDA	6	Number of time domain averages (coherent averages)
	TDP	4	Tropical Depression
	TMP	1,3,5,6	Temperature
	TMPB	1	Brightness Temperature
	TMFM	1	Mean Temperature
	TMPS	1	Skin (surface) temperature
	TMPT	1	Tropopause temperature
	TPH	2,4	Thunderstorm During Past Hour
	TP1-TP3	1,3	Tropopause Level 1-3 (3 levels)
	TPP	6	Tropopause height
	TRO	3	Trough Axis
	TRP	4	Triple Point
	TRS	2,4	Thunderstorm with Rain and Snow Mixed
	TRW	2,4	Thunderstorm with Rainshower
	TR7	3	700 mb Temperature Ridge
	TSD	6	Time Series Data
	TSP	6	Number of time series points (=FFT points)
	TSN	4	Tropical Storm - Northern Hemisphere
	TSS	4	Tropical Storm - Southern Hemisphere
	TSW	2,4	Thunderstorm with Snowshower
	TTN	1,3,5	Minimum Temperature
	TTX	1,3,5	Maximum Temperature
	TXT	6	Informational text messages
	UWC	5,6	U Wind Component
	VGS	6	Vertical inter-range gate spacing (center to center)
	VGW	6	Vertical range gate width (meters)
	VIS	1,3,5	Visibility
	VMC	4	Vorticity Maximum
	VRT	3,5	Vorticity
	VWC	5,6	\checkmark Wind Component
	WBC	4	Wind Barb - 100 knots
	WBI	4	Wind Barb - 1 or 2 knots
	WBL	4	Wind Barb - 50 knots .
	WBV	4	Wind Barb - 5 knots
	WBX	4	Wind Barb - 10 knots
	WDM	2,4	Wind Direction Missing
	WET	3	Non-Convective or Intermittent Precipitation (area outline)
	WFA	3	Warm Front-Aloft
	WFG	3	Warm Frontogenesis
	WFS	3	Warm Frontolysis
	WFX	3	Warm Frontolysis
	WMP	4	Warm Pool
	WMIX	1	Water vapor mixing ratio
\square	WNC	2,4	Calm Wind

\(\left.$$
\begin{array}{lll}\text { WPH } & 2,4 & \begin{array}{l}\text { Showers During Past Hour } \\
\text { WSM }\end{array}
$$

Wind Speed Missing\end{array}\right]\)| WVD | 1,4 |
| :--- | :--- |\quad| Wave Direction |
| :--- |
| WVH |

APPENDIX A - SECTION 2

MNEMONICS

Table A2-2. Data Block Data Code with Corresponding Mnemonics

NOTE: Formatted binary products originating from the USAF do not use mnemonics in the formatted binary data block (Use Code 2 in Table A2-1). Certain formatted binary element mnemonics use a binary data block code, making data binary in Mode $3 / S u b m o d e 1$. The following shows the element description mnemonic (which could appear in Mode 3/Submode 21), the data block data code (which could then appear in Mode 3/Submode 1), and the mnemonic to which that data code corresponds.

Barometric Characteristic
0 - Rising then falling
1 - Rising then steady
2-Rising
3 - Falling or steady, then rising
4 - Steady
5 - Falling then rising
6 - Falling then steady
7 - Falling
8 - Steady or rising, then falling

Data	Data	Corre-
Description	Block	sponding
Mnemonic	Data	Mnemonic
	Code	

$B C$
160 BCO
161 BC1
162 BC2
163 BC3
164 BC4
165 BC5
166 BC6
167 BC7
168 BC8
Cloud Amount Total
CTA

M - Missing	149	CAM
0 - No Clouds (Airways clear)	150	CAO,CLR
1 - One tenth	151	CA1
2 - Two to three tenths (Airways scattered)	152	CA2, SCT
3 - Four tenths	153	CA3
4 - Five tenths	154	CA4
5 - Six tenths	155	CA5
6 - Seven to eight tenths (Airways broken)	156	CAB,BKN
7 - Nine tenths	157	CA7
8 - Ten tenths (Airways overcast)	158	CAB,OVC
9 - Obscured	159	CA9,OBS

CAM
CAO,CLR
CA1
CA2,SCT
САЗ
CA4
CA5
CA6, BKN
CAB, OVC
CA9,OBS

Present Weather (primary)	WW1	
Present Weather (secondary)	WW2	
Present Weather (tertiary)	WW3	
No Weather Reportable	000	
Smoke	004	K
Haze	005	H
Dust/Sand	006	D
Blowing Dust/Sand	007	$B D$
Dust Devil	008	DD
Lightning	013	LTG
Thunderstorm	017	T
Squalls	018	SQL
Funnel Cloud	019	FNL
Drizzle during past hour	020	LPH
Rain during past hour	021	RPH
Snow during past hour	022	SPH
Freezing precipitation during last hour	024	ZPH
Showers during past hour	025	WPH
Fog during past hour	028	$F P H$
Thunderstorm during past hour	029	TPH
Dust Storm/Sand Storm	031	$B D S$
Blowing Snow	038	$B S$
Ground Fog	044	GF
Fog	045	F
Ice Fog	049	IF
Drizzle, light	051	L-
Drizzle, moderate	053	L
Drizzle, heavy	055	L+
Freezing Drizzle	056	ZL
Rain, light	061	R -
Rain, moderate	063	R
Rain, heavy	065	R_{+}
Freezing Rain	066	ZR
Rain and Snow Mixed	068	RS
Snow, light	071	S -
Snow, moderate	073	S
Snow, heavy	075	St
Ice Prisms	076	IPZ
Snow Grains	077	SG,
Ice Pellets	079	IP
Rain Showers	080	RW
Showers of Rain and Snow Mixed	083	RSW
Snow Showers	085	SW
Ice Pellet Shower	087	IPW
Hail Shower	089	AW
Thunderstorm with Rainshower	093	TRW
Thunderstorm with Snowshower	094	TSW
Thunderstorm with Rain and Snow Mixed	095	TRS
Thunderstorm with Hail	096	TA

APPENDIX A - SECTION 2

MNEMONICS
Table A2-3. Other Mnemonics Used in this Report

AFGWC	Air Force Global Weather Central
ANSI	American National Standards Institute
ASCI	American Standard Code for Information Interchange
AWS	Air Weather Service
A/N	Alphanumeric
BI	Band Index
CPC	Calcomp Pen Command
CPU	Central Processing Unit
DB	Data Blocks
DDB	Data Description Block
EOM	End of Map
EOS	End of Scan
EIB	End of Text Block
ETX	End of Text
FAA	Federal Aviation Administration
FF	Flag (2-bit indicator)
GI	Grid Indicator
GMT	Greenwich Mean Time
GV	Grid Value
	Hemisphere
H	
ICAO	International Civil Aviation Organization
IDV	Initial Direction (Vector)
I/J	Cartesian Coordinate Set (reference earth surface)
IL	Increment Length (Vector)
IPOLE/JPOLE	Grid Coordinates of the North or South Pole
LAT/LON	Latitude/Longitude Coordinates
MC	Multiplier Constant
M/N	Generalized Coordinate Set
NIST	National Institute of Standards and Technology
NCHAR	Number of Characters (in product title)
NWS	National Weather Service
OCT	Octant

PDB	Product Definition Block
PI	Projection (map) Indicator
PI SET	Projection Indicator Set. A code that defines the background geographic projection on which the transmitted product is valid. The PI SET provides the means by which products can be registered to geography.
$R E / D$	Effective Number of Grid Points from Pole to Equator
VEV	Variable Exception Vector
WMO	World Meteorological Organization
XMAX	Maximum Horizontal Size
XROW/YCOL	Pixel Coordinates for Scan Lines
X / Y	Pixel Coordinate Set (reference display area)
YMAX	Maximum Vertical Size
Z Z	Greenwich Mean Time (GMT) Zoom Disable Indicator

APPENDIX B

REFERENCES

1. Standard Telecommunication Procedures for Weather Data Exchange. FCM-S3-1989, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Federal Coordinator for Meteorological Services and Supporting Research: Washington, D.C., July 1989
2. AFOS Handbook Series, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service: Washington, D.C.
3. Location Identifiers. 7350.5Y, U.S. Department of Transportation, Federal Aviation Administration, Air Traffic Operations Service: Washington, D.C.
4. NOAA/NWS Location Identifiers. Communications Handbook No. 5, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service: Washington, D.C.
5. Binary Universal Form for data Representation (WMO Code FM 94 BUFR), 1988, World Meteorological Organization: Geneva, Switzerland.
6. The Storage of Weather Product Information and the Exchange of Weather Product Messages in Gridded Binary Form (WMO Code FM 92-VIII Ext.), 1989, World Meteorological Organization: Geneva, Switzerland.
7. AWIPS/NOAAPORT Interface Control Document, February 1990, U.s. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service: Washington, D.C.

APPENDIX C

CODE TABLES

SECTION 1 GENERAL

SECTION 2 METEOROLOGICAL PROGRAM CODES

APPENDIX C - SECTION 1

GENERAL
Table C1-1. Standard ASCII Code

Octal	Hexadecimal	Mnemonic	Meaning
000	00	NUL	Nul7
001	01	SOH	Start of Heading
002	02	STX	Start of Text
003	03	ETX	End of Text
004	04	EOT	End of Transmission
005	05	ENQ	Enquiry
006	06	ACK	Acknowledge
007	07	BEL	Bell
010	08	BS	Backspace
011	09	HT	Horizontal Tabulation
012	OA	LF	Line Feed
013	OB	$V T$	Vertical Tabulation
014	OC	$F F$	Form Feed
015	OD	CR	Carriage Return
016	OE	SO	Shift Out
017	OF	SI	Shift In
020	10	DLE	Data Link Escape
021	11	DC1	Device Control 1
022	12	DC2	Device Control 2
023	13	DC3	Device Control 3
024	14	DC4	Device Control 4
025	15	NAK	Negative Acknowledge
026	16	SYN	Synchronous Idle
027	17	ETB	End of Transmission Block
030	18	CAN	Cancel
031	19	EM	End of Medium
032	1 A	SUB	Substitute
033	$1 B$	ESC	Escape
034	1 C	FS	File Separator
035	$1 D$	GS	Group Separator
036	$1 E$	RS	Record Separator
037	$1 F$	US	Unit Separator

040	20	SP	Space (nonprinting)	
041	21	$!$	Exclamation Point	
042	22	"	Quotation Marks (Diaeresis)	
043	23	\#	Number Sign (Note 1)	
044	24	\$	Dollar Sign	
045	25	\%	Percent Sign	
046	26	\&	Ampersand	
047	27	,	Apostrophe (Closing single quote, Acute Accent)	
050	28	$($	Opening Parenthesis	
051	29)	Closing Parenthesis	
052	2 A	*	Asterisk	
053	$2 B$	+	Plus	
054	2 C	,	Comma (Cedilla)	
055	2D	-	Hyphen (Minus)	
056	$2 E$		Period (Decimal Point)	
057	$2 F$	/	Slant	
060	30	0	Digit	
061	31	1	Digit	
062	32	2	Digit	
063	33	3	Digit	
064	34	4	Digit	
065	35	5	Digit	
066	36	6	Digit	
067	37	7	Digit)
070	38	8	Digit	
071	39	9	Digit	
072	3 A	:	Colon	
073	$3 B$;	Semicolon	
074	3 C	<	Less Than	
075	3 D	$=$	Equals	
076	$3 E$	$>$	Greater Than	
077	$3 F$?	Question Mark	
100	40	0	Commercial At (Note 1)	
101	41	A	Upper Case Latin Letter	
102	42	B	Upper Case Latin Letter	
103	43	C	Upper Case Latin Letter	
104	44	D	Upper Case Latin Letter	
105	45	E	Upper Case Latin Letter	
106	46	F	Upper Case Latin Letter	
107	47	G	Upper Case Latin Letter	

					\bigcirc
		$\stackrel{ \pm}{\text { a }}$		べべへべへべべへ	シんにんににんに
		8	MGGGGMGO	GGGMGMGG	

Upper Case Latin Letter

Upper Case Latin Letter
Upper Case Latin Letter
Upper Case Latin Letter
Opening Bracket（Note 1）
Reverse Slant（Note l）
Closing Bracket（Note 1）
Circumflex（Note l）
Underline
Opening Single Quotation Mark
（Grave Accent）（Note 1）
Lower Case Latin Letter

160	70	p	Lower Case Latin Letter
161	71	q	Lower Case Latin Letter
162	72	r	Lower Case Latin Letter
163	73	s	Lower Case Latin Letter
164	74	t	Lower Case Latin Letter
165	75	u	Lower Case Latin Letter
166	76	v	Lower Case Latin Letter
167	77	w	Lower Case Latin Letter
170	78	x	Lower Case Latin Letter
171	79	y	Lower Case Latin Letter
172	$7 A$	z	Lower Case Latin Letter
173	$7 B$	1	Opening Brace (Note 1)
174	$7 C$		Vertical Line (Note 1)
175	$7 D$	Closing Brace (Note 1)	
176	$7 E$		Tilde (Note 1)
177	$7 F$	DEL	Delete

NOTE 1: Should be checked for international exchange.

Abstract

APPENDIX C - Section 2 METEOROLOGICAL PROGRAM CODES Table C2-1. Projection Indicator (PI) Set Codes

NOTES:

1. Projection reference latitudes are 60N for Northern Hemisphere polar stereographic and 22.5 N and 22.5 S for Mercator.
2. Projection (polar stereographic, Mercator), Longitude X (except Mercator), and ASCII Descriptor for the LAWC PI Set Codes will be determined by mutual agreement between the exchanging agencies controlling the weather information systems involved in the data exchange.
3. The following linear size ratios apply for polar stereographic;

Hemispheric $=6: 1$
Continental/Oceanic = 3:1
Regional Window $=2: 1$
Subwindow = 1:1
4. The following linear size ratios apply for Mercator:

Tropical Continental/Ocean $=3: 1$
Regional Window = 2:1
Subwindow = 1:1
5. Lower left corner points are in units of the USAF AFGWC whole mesh Satellite Global Data Base (SGDB) grid. The area coverage of the hemispheric projections are always 49×49 whole mesh SGDB grid points. The
Continental/Ocean are always 25×25. The Regional are always 17×17. The Subwindows are 9×9. The SGDB grid point values can be converted to NMC and FNOC whole mesh grid point values.

$\begin{aligned} & P I \\ & S E T \\ & C O D E \end{aligned}$	DESCRIPTION	PROJECTION	LONG X	$\begin{array}{r} \text { LOWER } \\ \text { CORNER } \\ \text { ROW } \end{array}$	$\begin{aligned} & \text { LEFT } \\ & \text { POINT } \\ & \text { COLUMN } \end{aligned}$	ASCII DES- CRIPTOR
00	No Background					
1	N. Hemisphere US	Polar Stereographic	80W	9	57	XW
2	N. Hemisphere Europe	Polar Stereographic	$10 E$	57	57	$X N$

3	N. Hemisphere Pacific	Polar Stereographic	170W	9	9	$X P$
4	N. Hemisphere Asia	$\begin{aligned} & \text { Polar } \\ & \text { Stereographic } \end{aligned}$	100 E	57	9	$X E$
5	S. Hemisphere	Polar Stereographic	100E	9	57	$X S$
6-9 (Not Assigned)						
10	Cont/Ocean N. America	Polar Stereographic	80W	17	57	$N A$
11	Cont/Ocean Atlantic (US)	Polar Stereographic	80W	29	53	NT
12	Cont/Ocean Atlantic (Europe)	Polar Stereographic	10E	53	53	EW
13	Cont/Ocean Eurasia	Polar Stereographic	$10 E$	57	36	AS
14	Cont/Ocean N.W. Pacific	Polar Stereographic	170W	9	9	$P Q$
15	Cont/Ocean N.E. Pacific	Polar Stereographic	170W	9	25	PN
16	Cont/Ocean Far East	Polar Stereographic	100E	33	9	$F E$
17-30 (Not Assigned)						
31	Regional Window Caribbean	Mercator		69	19	$C A$
32	Regional Window Tropical Hawaiian	Mercator lands		47	19	TR
33	Regional Window Marianas	Mercator		31	19	MY
34	$\begin{aligned} & \text { Regional Window } \\ & \text { S.E. Asia } \end{aligned}$	Mercator		25	19	ID
35-39 (Not Assigned)						
40	Regional Window CONUS	Polar Stereographic	80W	21	55	US

41	```Regional Window East US```	Polar Stereographic	80W	25	57	UE
42	Regional Window West US	Polar Stereographic	80W	17	57	UW
43	Regional Window North US	Polar Stereographic	80W	17	49	UN
44	Regional Window Canada	Polar Stereographic	80W	25	49	CN
45	Regional Window Europe	Polar Stereographic	10 E	52	39	$E U$
46	Regional Window East Asia	Polar Stereographic	100 E	33	12	JN
47	Regional Window Alaska	Polar Stereographic	170W	18	27	AQ
48	Regional Window Hawaii	Polar Stereographic	170W	7	31	PA
49	Regional Window Azores	Polar Stereographic	10 E	49	50	AZ
50	59 (Not Assigned)					
60	Tropical Cont/Ocean Indian Ocean	Mercator		9	27	10
61	Tropical Cont/Ocean W. Pacific	Mercator		31	27	PW
62	Tropical Cont/Ocean E. Pacific	Mercator		53	27	PZ
63	Tropical Cont/Ocean W. Hemisphere	Mercator		63	27	SA
64	Tropical Cont/Ocean Atlantic	Mercator		73	27	ST
65	Tropical Cont/Ocean Africa	Mercator		90	27	AF
66-69 (Not Assigned)						
70	Subwindow US (N.W.)	Polar Stereographic	80W	21	47	UM

71	Subwindow US (West)	Polar Stereographic	80W	19	50	$U A$
72	Subwindow US (Mountain)	Polar Stereographic	80W	22	50	$u C$
73	Subwindow US (S.W.)	Polar Stereographic	80W	22	53	$U X$
74	Subwindow US (N. Central)	Polar Stereographic	80W	25	50	$U D$
75	Subwindow US (S. Central)	Polar Stereographic	80W	25	53	$U L$
76	Subwindow US (East)	Polar Stereographic	80W	28	52	U0
77	Subwindow US (N.E.)	Polar Stereographic	80W	31	51	UP
78	Subwindow US (S.E.)	Polar Stereographic	80W	28	55	UF
79	Subwindow US (N.E. Pacific)	Polar Stereographic	80W	18	45	$U B$
80	Subwindow W. Europe	Polar Stereographic	10 E	48	38	$U K$
81	Subwindow Iceland	Polar Stereographic	10 E	44	40	IL
82	Subwindow Spain	Polar Stereographic	10 E	51	40	SP
83	Subwindow Italy	Polar Stereographic	10 E	51	36	$I Y$
84	Subwindow Turkey	Polar Stereographic	10 E	51	31	TU
85	Subwindow $U S S R$	Polar Stereographic	10 E	45	32	RS
86-89 (Not Assigned)						
90	Subwindow Alaska	Polar Stereographic	170W	22	31	$A K$
91	Subwindow Alaska (Arctic)	Polar Stereographic	170W	26	27	$A C$

92	Subwindow Alaska (NW Canada)	Polar Stereographic	170W	26	35	AY
93	Subwindow Alaska (Gulf)	Polar Stereographic	170W	18	35	GA
94	Subwindow Alaska (Bering Sea)	Polar Stereographic	170W	18	27	LU
95-99 (Not Assigned)						
100	Subwindow Hawail	Polar Stereographic	170W	7	34	HW
101	Subwindow Hawaii (NW)	Polar Stereographic	170W	16	31	HF
102	Subwindow Hawait (NE)	Polar Stereographic	170W	16	39	HG
103	Subwindow Hawaii (E)	Polar Stereographic	170W	7	39	HH
104	Subwindow Hawaii (W)	Polar Stereographic	170W	7	31	HI
105-109 (Not Assigned)						
110	Subwindow Korea	Polar Stereographic	100 E	30	15	Ko
111	Subwindow Japan	Polar Stereographic	100E	27	17	JP
112	Subwindow Okinawa	Polar Stereographic	1005	28	12	EC
113	Subwindow Asia (E USSR)	Polar Stereographic	100 E	33	20	MK
114	Subwindow Asia (NW Pacific)	Polar Stereographic	100 E	25	20	JH
115	Subwindow Asia (W Cen Pacific)	Polar Stereographic	100 E	25	12	JK
116	Subwindow Asia (China)	Polar Stereographic	100 E	33	12	CI
117-119 (Not Assigned)						

120	Subwindow Lajes	Polar Stereographic	10E	49	46	LJ
121	Subwindow Lajes (NW Atlantic)	Polar Stereographic	10E	41	50	$N F$
122	Subwindow Lajes (Iceland)	Polar Stereogrphic	10E	41	42	$G L$
123	Subwindow Lajes (NE At7antic)	Polar Stereographic	10E	49	42	PO
124	Subwindow Lajes (NC Atlantic)	Polar Stereographic	10E	49	50	$A X$
125-129 (Not Assigned)						
130	Subwindow Panama	Mercator		72	14	PM
131	Subwindow Gulf of Mexico	Mercator		70	12	$G X$
132	Subwindow Tropical Hawaii	Mercator		51	13	HT
133	Subwindow Guam	Mercator		35	14	GM
134	Subwindow S. China Sea	Mercator		27	14	SS
135	Subwindow Philippine Sea	Mercator		32	11	PH
136-149 (Not Assigned)						
150	LAWC \#1					
151	LAWC \#2					
152	LAWC \#3					
153	255 (Not Assigned)					

APPENDIX C - Section 2
 METEOROLOGICAL PROGRAM CODES

Table C2-2. Plot Process Codes
Code
Value
Octal Meaning
0 The character data within the block represent alphanumeric characters to be displayed as a label or character string. The label or string is to be placed with the lower left corner of the first character at the location specified by the M, N Coordinate. There shall be only one M, N Coordinate pair and one set of alphanumeric characters in the plot data block.

1 The character data within the block are to be interpreted as mnemonics for weather symbols to be displayed on the product. Each symbol is to be placed with the lower left corner of the symbol at the location specified by the M, N coordinate. Each mnemonic will be four ASCII characters in length, left justified and blank filled, and the data plot block may contain any number of coordinates and mnemonics (511 is the maximum due to the 4096 -byte block length restriction). The weather symbol mnemonics and their definition are shown in Table A2-1.

2 Multiple sets of coordinates and character data will appear in the plot data block (see Appendix F, Example 8.) In the first set, M COORDINATE (1) is set to the displayable rotation angle of the character data which appears in the other data sets of character data. Rotation of the data for display is done in a clockwise manner. N COORDINATE (1) in the first set gives the font justification of the displayable symbols. Justification values are assigned as follows:

0 Default device justification
1 Top/left
2 Center/left
3 Bottom/left
4 Top/center
5 Center/center
6 Bottom/center
7 Top/right
8 Center/right
9 Bottom/right
The four ASCII Characters in the first character string designate the character font definition set which will be used to display the characters given in the other character strings. These set designations are listed in Table C2-10. Each character string starting with the second is terminated with Null (if the Null Termination option is used) or ETX. See Section 2.2.3.2.B.

Example 8 in Appendix F illustrates the use of the Plot Data Block using Plot Process Code 2.

APPENDIX C - Section 2
METEOROLOGICAL PROGRAM CODES
Table C2-3. Grid Indicator (GI) Set Codes
NOTES:

1. Grids are defined for every regional window background map (see Table C2-2).

The last two digits of the GI Set Code are identical to the PI Set Code (31-49)
for the corresponding regional window background map. The hundred digit in the GI Set Code gives the grid mesh (e.g., Whole Mesh = 0, $1 / 2$ Mesh $=1,1 / 8$ Mesh = 2).
2. The array size for each GI Set Code is given in USAF AFGWC Satellite Global Data Base mesh units (whole, half, eighth). These units can be converted to NMC and FNOC corresponding mesh units.
3. Projection reference latitudes are 60 N for Northern Hemisphere polar stereographic and 22.5 N and 22.5 S for Mercator. The Mesh Lengths are true at these latitudes.
4. See AFGWC/TN - 79/003, Map Projections and Grid Systems for Meteorological Applications, March 1981, for a complete discussion of grid systems and their relation to various map projections.
5. Knowing the mesh size, the location of the pole on that grid mesh, and the grid point of the lower left corner of the product, one can determine IPOLE/ JPOLE as used in Mode 7/Submode 20.

GI SET	GRID		ARRAY	
CODE	MESH	DESCRIPTION	$\underline{\text { SIZE }}$	MESH LENGTH
031	Whole	Caribbean	17×17	3.71 degrees
032	Whole	Tropical Hawaiian Islands	17×17	3.71 degrees longitude
033	Whole	Marianas	17×17	3.71 degrees longitude
034	Whole	S. E. Asia	17×17	3.71 degrees longitude

035-039 (Not Assigned)
040 Whole Continental US $17 \times 17 \quad 381 \mathrm{~km}$

041
$17 \times 17 \quad 381$ km
Whole East US
Whole West US
$17 \times 17 \quad 381 \mathrm{~km}$
Whole North US
$17 \times 17 \quad 381$ km

044	Whole	Canada	17×17	381 km
045	Whole	Europe	17×17	381 km
046	Whole	Asia	17×17	381 km
047	Whole	Alaska	17×17	381 km
048	Whole	Hawaii	17×17	381 km
049	Whole	Azores	17×17	381 km
050-130 (Not Assigned)				
131	1/2	Caribbean	33×33	1.86 degrees longitude
132	1/2	Tropical Hawaiian Islands	33×33	1.86 degrees 7ongitude
133	1/2	Marianas	33×33	1.86 degrees longitude
134	1/2	S.E. Asia	33×33	1.86 degrees longitude
135-139 (Not Assigned)				
140	1/2	Continental US	33×33	190.5 km
141	1/2	East US	33×33	190.5 km
142	1/2	West US	33×33	190.5 km
143	1/2	North US	33×33	190.5 km
144	1/2	Canada	33×33	190.5 km
145	1/2	Europe	33×33	190.5 km
146	1/2	Asia	33×33	190.5 km
147	1/2	Alaska	33×33	190.5 km
148	1/2	Hawaii	33×33	190.5 km
149	1/2	Azores	33×33	190.5 km
150-230 (Not Assigned)				
231	1/8	Caribbean	129×129	. 464 degrees longitude
232	1/8	Tropical Hawaiian Islands	129×129	. 464 degrees longitude

233	$1 / 8$	Marianas	129×129	.464 degre
234	$1 / 8$	Philippines	129×129	.464 degre
235	-239 (Not Assigned)			
240	$1 / 8$	Continental US	129×129	47.62 km
241	$1 / 8$	East US	129×129	47.62 km
242	$1 / 8$	West US	129×129	47.62 km
243	$1 / 8$	North US	129×129	47.62 km
244	$1 / 8$	Canada	129×129	47.62 km
245	$1 / 8$	Europe	129×129	47.62 km
246	$1 / 8$	Asia	129×129	47.62 km
247	$1 / 8$	Alaska	129×129	47.62 km
248	$1 / 8$	Hawaij	129×129	47.62 km
249	$1 / 8$	Azores	129×129	47.62 km
250	256 (Not Assigned)			

APPENDIX C SECTION 2

Table C2-4. UNITS CODE (OCTAL)
NOTES:

1. $\quad *=$ Multiplied by
2. ** $=$ Raised to the power of
3. / = Divided by or per
4. Unit symbols shown in the symbol column are the preferred International Standard symbols which correspond to the Federal and American National Standards. Non ISO symbols correspond to practice that does not conflict with ISO, ANSI, and Federal practice.
5. Code units 15, 43, 46, and 74 have not been changed to conform with the ISO, ANSI, Federal and DOD standards and practice. These will probably by changed in future editions of this document to conform with metric practice.

CODE UNITS

```
    O = Degrees Fahrenheit
    1 = Degrees Kelvin
    2 = Degrees Celsius
    3 = Meters
    4 = Meters per Second
    5 = Knots
    6 = Miles per Hour
7 = Hectopascals (Millibars)
```

$10=$ Centimeters
11 = Meters per Second Squared
$12=$ Feet
$13=$ Geopotential Meter
14 = Seconds
$15=$ Gram-calories per square centimeter per day
16 = Nautical Miles per Day NM/d
17 = Centimeters per Second
$20=$ Probability Code
21 = Hectopascals per Second
22 = Per Second
23 = Dimensionless
$24=$ Percent
$25=$ Meters Squared per Second
26 = Kilograms per Square Meter
27 = Kilograms per Square Meter per Second

SYMBOL

${ }^{\circ} \mathrm{F}$ ${ }^{\circ} \mathrm{K}$ ${ }^{\circ} \mathrm{C}$
 m

m / s
Kt
mph
$h \mathrm{~Pa}$
cm
$\mathrm{m} / \mathrm{s}^{2}$
$f t$
$m_{s p}$
g. cal/ $\mathrm{cm}^{2} / d \quad\left(g^{*} \mathrm{cal} / \mathrm{cm}^{* *} 2 / d\right)$
cm / s
$\mathrm{hPa} / \mathrm{s} \quad$ (mbar/s)
$1 / s$
$\%$
$m^{2} / s \quad\left(m^{* *} 2 / s\right)$
$\mathrm{kg} / \mathrm{m}^{2}$
$\mathrm{kg} / \mathrm{m}^{2} / \mathrm{s}$
(mbar)
$\left(m / s^{* *} 2\right)$

$$
\left(g^{*} c a 7 / c m^{* *} 2 / d\right)
$$

($\mathrm{kg} / \mathrm{m}^{* * 2 \text { 2) }}$
($\mathrm{kg} / \mathrm{m}^{\star *} 2 / \mathrm{s}$)

CODE UNITS

$30=$ Hectopascals per Meter	$\mathrm{hPa} / \mathrm{m}$	(mbar/m)
$31=$ Percent per Meter	\%/m	
$32=$ Degrees Kelvin per Meter	${ }^{\circ} \mathrm{K} / \mathrm{m} 2$	
33 = Watts per Square Meter	$\mathrm{W} / \mathrm{m}^{2}$	($W / m^{* * 2 \text {) }}$
$34=$ Degrees Kelvin per Second	${ }^{\circ} \mathrm{K} / \mathrm{s}$	
$35=$ Degrees per 10 (Compass)	$\% 10$	
$36=$ Degrees Celsius per 10^{4} Square Kilometers	${ }^{0} \mathrm{C} / 10^{4} \mathrm{~km}{ }^{2}$	$(0 \mathrm{C} / 10 * * 4 \mathrm{km**} 2)$
37 = Degrees (Compass Direction)		
$40=$ Centimeters Squared per Second	$\mathrm{cm}^{2} / \mathrm{s}$	$(c m * * 2 / s)$
41 = Degrees Celsius per 100 feet (Gradient)	${ }^{\circ} \mathrm{C} / 100 \mathrm{ft}$	
42 = Degrees Celsius per 100 Km (horizontal gradient)	${ }^{\circ} \mathrm{C} / 100 \mathrm{~km}$	
43 = Gram-Calories per Square Centimeter per hour	g.cal/ $\mathrm{cm}^{2} / \mathrm{h}$	(g^{*} cal/ ${ }^{\text {cm** }} / \mathrm{h}$)
44 = Refractive N Units		
$45=$ Meters Squared per 3 times 10^{15}	$\mathrm{m}^{2} / 3.10^{15}$	($m^{* * 2 / 3 * 10 * * 15) ~}$
$46=$ Microbars Per Second	ubar/s	
$47=$ Millimeters	mm	
$50=$ Kilometers	$k m$	
51 = Inches	in	
$52=$ Yards	yd	
53 = Statute Miles	$m i$	
54 = Nautical Miles	NM	
$55=$ Degrees of Latitude or Longitude	Lat, Lon	
$56=$ Eights		
57 = Square Kilometers	km^{2}	(km**2)
$60=$ Square Statute Miles	$m i^{2}$	($m i * * 2$)
61 = Mean Solar Minutes	min	
$62=$ Mean Solar Hours	h	
63 = Mean Solar Days	d	
$64=$ Months	mo	
$65=$ Years	$y r$	
$66=$ Per Second times 10 to the minus fifth power	1/s. 10^{-5}	$(1 / s)^{*} 10^{* *}-5$
67 = Kilometers per Hour	km/h	
$70=$ Degrees of Latitude or Longitude per Day	Lat/d, Lon/d	
71 = Grams		
72 = Kilograms	kg	
73 = Grams per Cubic Centimeter	$\mathrm{g} / \mathrm{cm}^{3}$	(g/cm**3)
$74=$ Langleys	7 y	
75 = Grams per Kilogram	g / kg	
76 = Millimeters per Hour	mm / h	
77 = Dobson units	m atm-cm	

$30=$ Hectopascals per Meter
$31=$ Percent per Meter
32 = Degrees Kelvin per Meter
33 = Watts per Square Meter
34 = Degrees Kelvin per Second
35 = Degrees per 10 (Compass)
$36=$ Degrees Celsius per 10^{4} Square Kilometers
37 = Degrees (Compass Direction)
$40=$ Centimeters Squared per Second
41 = Degrees Celsius per 100 feet (Gradient)
42 = Degrees Celsius per 100 Km (horizontal
gradient)
43 = Gram-Calories per Square Centimeter
per hour
44 = Refractive N Units
$45=$ Meters Squared per 3 times 10^{15}
$46=$ Microbars Per Second
$47=$ Millimeters
$50=$ Kilometers
51 = Inches
$52=Y$ ards
$53=$ Statute Miles
$54=$ Nautical Miles
$55=$ Degrees of Latitude or Longitude
$56=$ Eights
57 = Square Kilometers
$60=$ Square Statute Miles
61 = Mean Solar Minutes
62 = Mean Solar Hours
63 = Mean Solar Days
$64=$ Months
$65=$ Years
$66=$ Per Second times 10 to the minus
fifth power
67 = Kilometers per Hour
70 = Degrees of Latitude or Longitude per Day
71 = Grams
72 = Kilograms
73 = Grams per Cubic Centimeter
74 = Langleys
75 = Grams per Kilogram
76 = Millimeters per Hour
77 = Dobson units

```
CODE UNITS
100 = Degrees of Latitude * 100
101 = Degrees of Longitude * 100
102 = Number of micro-seconds
103 = Velocity Variance
104 = Velocity
105 = Per degree Kelvin
```

SYMBOL
Lat. 100
Lon. 100
$s /\left(10^{6}\right)$
$(\mathrm{cm} / \mathrm{s})^{2}$
cm / s
$1 /{ }^{\circ} \mathrm{K}$

APPENDIX C - SECTION 2

METEOROLOGICAL PROGRAM CODES
Table C2-5. Data Representation Codes

CODE (Octal) DEFINITION

$0 \quad$ Two's complement integer
(Scaled by a multiplier characteristic power of 10)

1
IEEE Floating point
ASCII (7 bit ANSI X3.4-1977)
Two's complement integer
(Scaled by a multiplier characteristic power of 2)

APPENDIX C - SECTION 2 METEOROLOGICAL PROGRAM CODES

Table C2-6. Fonts

Font Description

NWS1 AFOS Standard Character Set, Programmer's Reference Guide, Graphic Display Module, Publication No. WDL-TR7676A, Environmental Systems, Ford Aerospace and Communications Corp.

NWS2 AFOS Special Character Set, Programmer's Reference Guide, Graphic Display Module, Publication No. WDL-TR7676A, Environmental Systems, Ford Aerospace and Communications Corp.

APPENDIX D
 PRODUCT IDENTIFIER NUMBERS

Table D-1	File Indicators
Table D-2	Catalog Numbers

D-1

APPENDIX D

PRODUCT IDENTIFIER NUMBERS

Table D-1. File Indicators

Number
000 to 100
101 to 107
110 to 115
116 to 123
124 to 132
133 to 176
177
200 to 377

Description

Determined by interagency agreement. Assigned to Air Force Assigned to NWS Assigned to FAA Assigned to Navy
Not Assigned
Internal Use Only Not Assigned

APPENDIX D

PRODUCT IDENTIFIER NUMBERS
Table D-2. Catalog Numbers

Catalog Numbers are assigned by the USAF Communications Command, Carswell AFB, TX. Unique Catalog Numbers are assigned to each different product. The AFCC maintains a Catalog Number/WMO Abbreviated Heading cross-reference.

The length and need for continual updates preclude the duplication of Catalog Numbers in this document. Please contact the AFCC directly for this information.

APPENDIX E

LOCATION IDENTIFIERS

1. Location Identifiers. 7350.5 Y , U.S. Department of Transportation, Federal Aviation Administration, Air Traffic Operations Service: Washington, D.C.
2. NOAA/NWS Location Identifiers. Communications Handbook No. 5, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service: Washington, D.C.
\bigcirc

APPENDIX F
 EXAMPLES

No. 1 - Vector Graphic Product Structure
No. 2 - Alphanumeric Product
No. 3 - Surface Formatted Binary Product
No. 4 - Upper Air Formatted Binary Product
No. 5 - Unpacked Gridded Data Product
No. 6 - Plot Data Block Using Plot Process Code 2

APPENDIX F

Example No. 1 - Vector Graphic Product Structure NOTES

Mode 01, Submode 01	Product Identification Block
Mode 04, Submode 20	Vector Graphic Product Definition Block
Mode 01, Submode 04	Define Plot Parameters Block
Mode 04, Submode 02	Relative Vectors Block for Temperature Contour 1

Mode 04, Submode 02	Relative Vectors Block for Temperature Contour n
Mode 05, Submode 03	Line Labels Character Block for Temperature Contours 1-n
Mode 01, Submode 04	Define Plot Parameters Block
Mode 04, Submode 02	Relative Vectors Block for Pressure Contour 1

\cdot		7
Mode 04, Submode 02	Relative Vectors Block for Pressure Contour m	8
Mode 05, Submode 03	Line Labels Character Block for Pressure Contours 1-m	9
Mode 01, Submode 04	Define Plot Parameters Block	
Mode 04, Submode 02	Relative Vectors Block for Cold Front	

Example No. 1 (Cont.). Vector Graphic Product Structure NOTES

$$
F-3
$$

Example No. 1 (Cont.). Vector Graphic Product Structure

NOTES:

1. Identifies the product.
2. Gives product related information.
3. Set up parameters for plotting temperature contours, e.g., line character-dashed, line color - red.
4. Transmits vectors defining temperature contours 1-n.
5. Transmits labels to be associated with temperature contours.
6. Set up parameters for plotting pressure contours, e.g., line character - solid, line color - blue.
7. Transmits vectors defining pressure contours l-m.
8. Transmits labels to be associated with pressure contours.
9. Set up parameters for plotting cold front, e.g., line character - symbolic, line color - blue.
10. Transmits vectors defining cold front line.
11. Transmits labels to be associated with cold front.
12. Set up parameters for plotting wind barbs, e.g., line character - reset, line color - green.
13. Transmits wind barbs.
14. Set up parameters for plotting station plots, e.g., line color - orange.
15. Transmits data plots for stations 1-1.
16. Set up parameters for plotting weather symbols, e.g., line color - red.
17. Transmits weather symbols to be plotted.
18. Set up parameters for plotting product legend, e.g., line color - black.
19. Transmits data for product legend.
20. Termination for product.

$$
\mathrm{F}-4
$$

APPENDIX F

Example No. 2-Alphanumeric Product

MODE O1 SUBMODE 01
PRODUCT
IDENTIFICATION
BLOCK

PRODUCT
IDENTIFICATION
BLOCK

LENGTH	
001	001
K	A
W	N
U	000
PRODUCT IDENTIFIER	
"AA" PLUS MANOP	
NUMBER (10 bytes)	
FILE TIME (6 bytes)	

MODE 05 SUBMODE 04
ALPHANUMERIC
DATA BLOCK \#1

NOTE: New Mode 05 Submode 04 required because next message would cause block length to exceed 4096 characters.

$$
F-5
$$

Example No. 2 (Cont.) - Alphanumeric Product

MODE 05 SUBMODE 04
ALPHANUMERIC
DATA BLOCK \#2

MESSAGE K+1 SUBSET
IDENTIFIER

[^0]
$$
\mathrm{F}-6
$$

APPENDIX F

Example No. 3 Surface Formatted Binary Product

PRODUCT
IDENTIFICATION
BLOCK

LENGTH	
01001	001
K	G
W	C
U	000
G	F
S	A
U	S
0	1
ASCII SPACE	ASCII SPACE
$\frac{1982}{}$	
2	5
12	00

MODE 03 SUBMODE 21 FORMATTED BINARY DATA DESCRIPTION BLOCK

01 LENGTH	
003	021
$\mathrm{K}=\# \mathrm{OF}$	\# OF BYTES
ELEMENTS	IN ELEMENT
PER SET	SET
$\mathrm{M}=$ \# OF ELEMENT SETS	
C	A
L	ASCII SPACE
4	4
0	23 (octal)
0	0
0	
P	P
P	ASCII SPACE
10 (octal)	2
0	7
1	-1
0	
-	
W	W
1	ASCII SPACE
START BYTE	2
0	23 (octal)
0	0
	0

$$
F-7
$$

Example No. 3 (Cont.) - Surface Formatted Binary Product

MODE 03 SUBMODE 01
FORMATTED BINARY
DATA BLOCK \#1

Note: New Mode 03 Submode 01 required because next set of data would cause block length to exceed 4096 bytes.

MODE 03 SUBMODE 01
FORMATTED BINARY
DATA BLOCK \#2

F-9

APPENDIX F

Example No. 4 Upper Air Formatted Binary Product

MODE 01 SUBMODE 01 PRODUCT
IDENTIFICATION BLOCK

MODE 03 SUBMODE 20 PRODUCT DEFINITION BLOCK

MODE 03 SUBMODE 21 FORMATTED BINARY DATA DESCRIPTION BLOCK

PRODUCT
IDENTIFICATION BLOCK

$01 \quad$ LENGTH	
01	001
K	G
W	C
U	000
G	F
U	W
U	S
0	4
ASCII SPACE	ASCII SPACE
1982	
6	20
12	00

01	LENGTH		
003		020	
ASCII	SPACE	ASCII	
SPACE			
ASCII	SPACE	ASCII	
72			
202			

Example No. 4 (Cont.) Upper Air Formatted Binary Product

Example No. 4 (Cont.) Upper Air Formatted Binary Product

MODE 03 SUBMODE 21
FORMATTED BINARY
DATA DESCRIPTION
BLOCK

REPORTED
SIGNIFICANT
LEVEL DATA

01 LENGTH	
003	021
3	6
1	
M	W
1	ASCII SPACE
4	2
0	13 (octal)
1	1
0	
T	P
1	ASCII SPACE
6	2
0	13 (octal)
1	1
0	
P	P
W	ASCII SPACE
8	2
0	51 (octal)
1	-2
0	

MODE 03 SUBMODE 01
FORMATTED BINARY
DATA BLOCK \#1

ELEMENT \#1
ELEMENT \#2
ELEMENT \#3

MODE 01 SUBMODE 02 END OF PRODUCT BLOCK

APPENDIX F

Example No. 5 Unpacked Gridded Data Product

```
MODE 01 SUBMODE 01
    PRODUCT
    IDENTIFICATION
    BLOCK
```

PRODUCT
IDENTIFICATION
BLOCK

LENGTH	
01	001
K	G
W	C
U	000
G	X
P	G
N	A
4	S
T	A
FILE TIME	$(6$ BYTES $)$

01 LENGTH	
007	020
011	141
SCALE FACTOR	
001	002
ZERO FILLED	ZERO FILLED
ZERO FILLED	
ZERO FILLED	
NUMBER OF COLUMNS (M)	
NUMBER OF ROWS (L)	
REFERENCE I COORDINATE	
BEGIN VALID PERIOD	
END VALID PERIOD (4 BYTES)	
I POLE	
J POLE	
RE/D	
LONGITUDE X	
002	002

MODE 03 SUBMODE 21 FORMATTED BINARY \& UNPACKED UGDF DATA DESCRIPTION BLOCK

LENGTH	
003	
001	021
\# OF ELEMENT	SETS (MXL)
T	002
P	ASCII SPACE
004	002
ZERO FILLED	002
001	-001
000	

F-13

Example No. 5 (Cont.) Unpacked Gridded Data Product

MODE 03 SUBMODE 01 FORMATTED BINARY \& UNPACKED UGDF DATA BLOCK 2
-

MODE 03 SUBMODE 01 FORMATTED BINARY \& UNPACKED UGDF DATA BLOCK 2

MODE 01 SUBMODE 02 END OF PRODUCT BLOCK

APPENDIX F

Example No. 6 Plot Data Block Using Plot Process Code 2

```
MODE 05 SUBMODE 02
    ALPHANUMERIC DATA
    BLOCK FOR PRODUCT
    REQUEST
```

01 LENGTH	
005	002
$\bar{B}^{\prime} \mathrm{R}^{\text {I CHR S S }}$	2
M COORD (1) = ROT ANGLE	
N COORD (1) = FONT JUST	
FONT CH SET	CHR 2
CHR 3	CHR 4
M COORDINATE (2)	
N COORDINATE (2)	
CHR 1	CHR 2
CHR $\mathrm{n}-1$	CHR n
M COORDINATE (n)	
N COORDINATE (n)	
CHR 1	CHR 2
-	
CHR n-1	CHR n
CHECKSUM	

[^0]: MODE 01 SUBMODE 02 END OF PRODUCT BLOCK

